Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(2n^2+5n\right)\left(2n^2+5n\right)+12\left(2n^2+5n\right)+36=\left(2n^2+5n\right)^2+2.\left(2n^2+5n\right).6+6^2=\left(2n^2+5n+6\right)^2\)
\(A=\left(2n^2\right)^2+2.\left(2n^2\right).\left(3n\right)+\left(3n\right)^2-4n^2-6n+1\)
\(=\left(2n^2+3n\right)^2-2.\left(2n^2+3n\right)+1=\left(2n^2+3n-1\right)^2\)
a,A=(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)
đặt x2+5x+5=a ta có
A=(a-1)(a+1)+1
=a2-1+1=a2
thay a =x2+5x+5 ta có A=(x2+5x+5)2
vì x nguyên nên x2+5x+5 nguyên
vậy A là bình phương của 1 số nguyên với mọi x nguyên
b,B=x4-4x3-2x2+12x+9
=x4+x3-5x3-5x2+3x2+3x+9x+9
=x3(x+1)-5x2(x+1)+3x(x+1)+9(x+1)
=(x+1)(x3-5x2+3x+9)
=(x+1)(x3+x2-6x2-6x+9x+9)
=(x+1)[x2(x+1)-6x(x+1)+9(x+1)]
=(x+1)(x+1)(x2-6x+9)
=(x+1)2(x+3)2
vì x nguyên nên x+1 nguyên;x+3 nguyên
vậy B là bình phương củ một số nguyên với mọi x nguyên
Ta có \(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(\Leftrightarrow M=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(t=x^2+5x+5\)Khi đó
\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)
Vì x nguyên nên \(x^2+5x+5\)nguyên \(\Rightarrow\left(x^2+5x+5\right)^2\)là bình phương của 1 số nguyên (đccm)
Hok tốt!!
2A = (3+1)(3-1)(3^2+1)(3^4+1)...(3^64+1)
2A= (3^2-1)(3^2+1)(3^4+1)...(3^64+1)
Cứ tiếp tục như thế ta dc
2A= 3^128 -1
A = (3^128-1)/2
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(\Rightarrow2A=8.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
.....
\(=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(=3^{128}-1\)
\(\Rightarrow A=\frac{3^{128}-1}{2}\)