K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@ x+y+z=1`.

`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)

`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.

`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`

`=1.`

Vậy `P` không phụ thuộc vào giá trị của biến.

`@ x+y+z=1`.

`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)

`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.

`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`

`=1.`

Vậy `P` không phụ thuộc vào giá trị của biến.

b: \(M=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}=\dfrac{a+b+c}{abc}=0\)

c: \(B=\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(x-z\right)\left(y-z\right)}-\dfrac{x}{\left(x-z\right)\left(x-y\right)}\)

\(=\dfrac{y\left(x-z\right)-z\left(x-y\right)-x\left(y-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+zy-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)

26 tháng 11 2022

a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)

\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

=0

c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)

\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\dfrac{1}{xyz}\)

 

6 tháng 2 2021

Tham khảo:

Chứng minh \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)} \dfrac{z-x}{\left(y-z\right)\left(y-x\right)} \dfrac{... - Hoc24

29 tháng 1 2018

\(P=\dfrac{\left(x+y\right)\left(y+z\right)}{z+x}+\dfrac{\left(y+z\right)\left(z+x\right)}{x+y}+\dfrac{\left(z+x\right)\left(x+y\right)}{y+z}\)

Áp dụng BĐT Cauchy ta có:

\(\left\{{}\begin{matrix}x+y\ge2\sqrt{xy}\\z+y\ge2\sqrt{yz}\\x+z\ge2\sqrt{xz}\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(x+y\right)\left(y+z\right)}{z+x}\ge\dfrac{2\sqrt{xy}.2\sqrt{yz}}{2\sqrt{xz}}\)

\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)}{z+x}\ge2y\) (1)

Chứng minh tương tự ta có:

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\left(y+z\right)\left(z+x\right)}{x+y}\ge2z\left(2\right)\\\dfrac{\left(y+x\right)\left(z+x\right)}{z+y}\ge2x\left(3\right)\end{matrix}\right.\)

Từ (1),(2),(3)

\(\Rightarrow P\ge2x+2y+2z\)

\(\Rightarrow P\ge2.3\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi

\(x=y=z\)

Vậy Min P là 6 khi \(x=y=z\)

29 tháng 1 2018

Otasaka Yu: Cosi nhưng đừng là ở dưới đó.... (it's same some mô típ i've read and seen Manga and Anime Japan ( ͡° ͜ʖ ͡°))

\(\dfrac{\left(x+y\right)\left(y+z\right)}{x+z}+\dfrac{\left(y+z\right)\left(x+z\right)}{x+y}\ge2\sqrt{\left(y+z\right)^2}=2\left(y+z\right)\)

Tương tự rồi cộng theo vế:

\(2P\ge2\left(x+y+z\right)\Leftrightarrow P\ge x+y+z=3\)

\("=" <=> x=y=z=1\)

It's A jOke. DoN't TriGgeRed my dude !

28 tháng 6 2017

Phép cộng các phân thức đại số

Phép cộng các phân thức đại số