Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : (10^50)^3<10^150+5*10^50+1<10^150+3*(10^50)^2+3*10^50+1= (10^50+1)^3
vay10^150+5*10^50+1 khong la lap phuong cua 2 so tu nhien
Tham khảo .
Ta có :
\(\left(10^{53}\right)^3< 10^{150}+5.10^{50}+1< 10^{150}+3.\left(10^{50}\right)^2+1\)
\(=\left(10^{50}+1\right)^3\)
Vậy \(10^{150}+5.10^{50}+1\)không là lập phương của 1 số tự nhiên
đpcm
Giả sử 10^150 + 5.10^50+1=m^3 (m là số tự nhiên)
Ta thấy VT có tận cùng là 1, suy ra VP phải có tận cùng 1.
mà 1^3=1,2^3=8,... nên m phải có tận cùng là 1, hay m=10k+1 (k là số tự nhiên)
10^150 + 5.10^50+1=(10k+1)^3=1000.k^3+300.k^2+30.k+1
10^150 + 5.10^50 - 1000.k^3- 300.k^2-30.k=0
suy ra A=10^150 + 5.10^50 - 1000.k^3chia hết cho 3
10^150=(9+1)^150 chia 3 dư 1
5.10^50=5.(9+1)^50 chia 3 dư 2
1000k=999k+k
suy ra k chia hết cho 3
10^150=(9+1)^150 chia 9 dư 1
5.10^50=5.(9+1)^50 chia 9 dư 5
suy ra 10^150 + 5.10^50chia 9 dư 6 (**)
mà 1000.k^3+ 300.k^2+30.k chia hết cho 9 (do k chia hết cho 3) (***)
Từ (**)(***) suy ra mâu thuẫn.
Vậy 10^150 + 5.10^50+1không thể là lập phương của 1 số tự nhiên.
Gọi ba số nguyên dương liên tiếp lần lượt là n , n+1 , n+2 (\(n\in Z+\))
Ta có : \(n\left(n+1\right)\left(n+2\right)=\left(n^2+n\right)\left(n+2\right)=n^3+2n^2+n^2+2n=n^3+3n^2+2n\)
Mặt khác : \(n^3< n^3+3n^2+2n< n^3+3n^2+3n+1\)
\(\Rightarrow n^3< n^3+3n^2+2n< \left(n+1\right)^3\)(1)
Vì n là số nguyên dương nên từ (1) ta có \(n\left(n+1\right)\left(n+2\right)\) không là lập phương của một số tự nhiên.