Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{\left(cos^2x-sin^2x\right)^2}{4sin^2x.cos^2x}-\dfrac{1}{4sin^2x.cos^2x}=\dfrac{\left(cos^2x-1-sin^2x\right)\left(cos^2x+1-sin^2x\right)}{4sin^2x.cos^2x}\)
\(=\dfrac{-2sin^2x.2cos^2x}{4sin^2x.cos^2x}=-1\)
\(y^2-3y-1=0\) có \(ac=-1< 0\Leftrightarrow\) có 2 nghiệm trái dấu hay có 1 nghiệm dương
\(=4\left(sin^2x+cos^2x\right)^2-8sin^2x.cos^2x-cos4x\)
\(=4-2\left(2sinx.cosx\right)^2-cos4x\)
\(=4-2sin^22x-cos4x\)
\(=3+\left(1-2sin^22x\right)-cos4x\)
\(=3+cos4x-cos4x\)
\(=3\)
\(\frac{1}{sin2a}=\frac{sina}{sina.sin2a}=\frac{sin\left(2a-a\right)}{sina.sin2a}=\frac{sin2a.cosa-cos2a.sina}{sina.sin2a}\)
\(=\frac{sin2a.cosa}{sina.sin2a}-\frac{cos2a.sina}{sina.cos2a}=\frac{cosa}{sina}-\frac{cos2a}{sin2a}=cota-cot2a\)
Áp dụng vào bài toán:
\(A=\frac{1}{sin2y}+\frac{1}{sin2\left(2y\right)}+\frac{1}{sin2\left(4y\right)}-coty+cot8y\)
\(=coty-cot2y+cot2y-cot4y+cot4y-cot8y-coty+cot8y\)
\(=0\)
\(B=\frac{1}{sin2\left(2x\right)}+\frac{1}{sin2\left(2x\right)}+\frac{1}{sin2\left(8x\right)}-cot2x+cot16x\)
\(=cot2x-cot4x+cot4x-cot8x+cot8x-cot16x-cot2x+cot16x\)
\(=0\)
\(C=\frac{\cos4x.\tan2x-\sin4x}{\cos4x.\cot2x+\sin4x}\)
\(=\frac{\cos4x.\sin2x-\sin4x.\cos2x}{\cos4x.\cos2x+\sin4x.\sin2x}.\frac{\sin2x}{\cos2x}\)
\(=\frac{\sin\left(2x-4x\right)}{\cos\left(4x-2x\right)}.\frac{\sin2x}{\cos2x}=-\frac{\sin^22x}{\cos^22x}=-\tan^22x\)
Giả sử các biểu thức đều có nghĩa
\(A=2\left(\left(sin^2x\right)^3+\left(cos^2x\right)^3\right)-3\left(sin^4x+cos^4x+2sin^2xcos^2x-2sin^2xcos^2x\right)\)
\(A=2\left(sin^2x+cos^2x\right)\left(\left(sin^2x+cos^2x\right)^2-3sin^2xcos^2x\right)-3\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)\)
\(A=2\left(1-3sin^2xcos^2x\right)-3\left(1-2sin^2xcos^2x\right)\)
\(A=2-6sin^2xcos^2x-3+6sin^2xcos^2x=-1\)
b/ \(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{tanx-1}=\dfrac{1+cotx}{1-cotx}-\dfrac{2}{\dfrac{1}{cotx}-1}\)
\(B=\dfrac{1+cotx}{1-cotx}-\dfrac{2cotx}{1-cotx}=\dfrac{1+cotx-2cotx}{1-cotx}=\dfrac{1-cotx}{1-cotx}=1\)
c/ \(C=cos^4x-sin^4x+cos^4x+sin^2xcos^2x+3sin^2x\)
\(C=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+cos^2x\left(cos^2x+sin^2x\right)+3sin^2x\)
\(C=cos^2x-sin^2x+cos^2x+3sin^2x\)
\(C=2cos^2x+2sin^2x=2\left(cos^2x+sin^2x\right)=2\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
\(A=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{4}+x\right)=0\)