Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A-A=(23+23+24+25+....+22014+22015)-(22+22+23+24+......+22014)
A=22015=210.22005= 1024.22005 chia hết cho 1024 (đpcm)
Theo tớ câu b) sai cậu à
b) 106 - 57 chia hết cho 59
Đấy là theo tớ sai thì thôi nha
Chúc cậu hok tốt ~
a) Ta có : 87 - 218 = ( 23)7 - 217+ 1
=> 87 - 218 = 23 x 7 - 217 x 21
=> 87 - 218 = 221 - 217 x 2
=> 87 - 218 = 217 + 4 - 217 x 2
=> 87 - 218 = 217 x 24 - 217 x 2
=> 87 - 218 = 217 x ( 24 - 2 )
=> 87 - 218 = 217 x ( 16 - 2 )
=> 87 - 218 = 217 x 14
=> 87 - 218 chia hết cho 4 ( vì phân tích có thừa số 14 )
b) Ta có : 106 - 57 = ( 2 x 5 )6 - 56 + 1
=> 106 - 57 = 26 x 56 - 56 x 51
=> 106 - 57 = 56 x ( 26 - 51 )
=> 106 - 57 = 56 x ( 64 - 5 )
=> 106 - 57 = 56 x 59
=> 106 - 57 chia hết cho 59 ( vì phân tích ra có thừa số 59 )
1-3+5-7+....+2009-2011+2013
=-2+(-2)+....+(-2)+2013
cÓ 503 SỐ HẠNG
=(-2).503 +2013
=1007
Bài giải
Theo bài ra, ta có: a+b chia hết cho 11 và a^2+b^2 chia hết cho 11
a^2+b^2 = a.a+b.b chia hết cho 11 => a chia hết cho 11, b chia hết cho 11 => a^3+a^3=a.a.a+b.b.b cũng chia hết cho 11
K CHO MÌNH NHÉ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Do số ước của số chính phương bao giờ cũng là số lẻ
Mà số ước của số trên là (3+1)x(2+1)4 ( thực ra là (3+1) x ( 2+1 ) x (2+1) x (2 + 1) x( 2 + 1) )=324 là số chẵn
=> Số trên ko là số chính phương ( diều cần chứng minh )
K mk nha mk nhanh nhất
Bài 1:
Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
bài 2:
Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)
\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)
\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
\(ĐặtA=\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(2A=\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\)
\(2A-A=\left(\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\right)\)
\(A=\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\)
\(2A=3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\)
\(2A-A=\left(3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\right)\)
\(A=3+\frac{1}{2}-\frac{2015}{2^{2013}}-\frac{3}{2}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{2015}{2^{2013}}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{4030}{2^{2014}}-\frac{2}{2^{2014}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{4032}{2^{2014}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{2017}{2^{2014}}< 2\)
=> đpcm
Bài này dễ thôi mà nhưng mình chỉ gợi ý thôi nhé! Bạn phải đổi phần mẫu số ra đã nhé ! *CỐ LÊN*
a, s1 có 2015 hạng tử
=> s1= (2014:2).-1+2015=1007.(-1)+2015=1008
Lời giải:
a,S1=1+(-2)+3+(-4)+...+(-2014)+2015
=(1-2)+(3-4)+...+(2013-2014)+2015
=-1+(-1)+...+(-1)+2015
=-1.1007+2015
=(-1007)+2015
=1008
b,S2=(-2)+4+(-6)+8+...+(-2014)+2016
=(-2+4)+(-6+8)+...+(-2014+2016)
=2+2+...+2
=2.504
=1008
c,S3=1+(-3)+5+(-7)+...+2013+(-2015)
=(1-3)+(5-7)+...+(2013-2015)
=(-2)+(-2)+...+(-2)
=(-2).504
=-1008
d,S4=(-2015)+(-2014)+(-2013)+...+2015+2016
=(-2015+2015)+...+0+2016
=0+...+0+2016
=2016
STUDY WELL !
khó thế sao giải bây giờ