K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2015

2A-A=(23+23+24+25+....+22014+22015)-(22+22+23+24+......+22014)

      A=22015=210.22005= 1024.22005 chia hết cho 1024 (đpcm) 

26 tháng 1 2019

2a-4 chia hết cho a+2

Mà a+2 chia hết cho a+2

Nên 2(a+2) chia hết cho a+2

     2a+4 chia hết cho a+2  (2a+4 là từ 2(a+2) ở trên xuống dùng tính chất phân phối) (phần trong ngoặc này không ghi vào vở nha)

=> (2a-4)-(2a+4) chia hết cho a+2

    -8 chia hết cho a+2

=> a+2 € Ư(-8)

a+2 € {1;-1;2;-2;4;-4;-8;8}

Vậy a € {-1;-3;0;-4;2;-6;-10;6}

6a+4 chia hết cho 2a+1

Mà 2a+1 chia hết cho 2a+1

Nên 3(2a+1) chia hết cho 2a+1

       6a+3 chia hết cho 2a+1 ( tương tự như câu trên)

=> (6a+4)-(6a+3) chia hết cho 2a+1

       1 chia hết cho 2a+1

=> 2a+1 € Ư(1)

2a+1 € {1;-1}

2a € {0;-2}

Vậy a € {0;-1}

Còn câu cuối tớ không biết làm

26 tháng 1 2019

Cảm ơn bạn nhìu nha

3 tháng 10 2015

1) đang nghĩ

2) 

2 + 22 + 23 + ... + 2100

= ( 2 + 22 ) + ( 23 + 2) + ... + ( 299 + 2100 )

= 2.(1+2) + 23(1+2) + ... + 299(1+2)

= 2.(2 + 23 + ... + 299 ) chia hết cho 2

=> đpcm

3 tháng 10 2015

1) 20112002 = 20112000.20112 = (20114)500 x .........1 = ...........1 x .............1 = ...........1

20092000 = (20094)500 = ................1

=> A = 20112002 + 20092000 = ...........1 + ............1 = .............2 không chia hết cho 5

3 tháng 10 2015

2011^2002 = 2011^2000 . 2011^2  = (2011^5)^400 . 2011^2 = (.......5)^400 . ....1 = .....5  .   ......1 = ........5                                                     2009^2000 = (2009^5)^400 = tận cùng là 9 hoặc 1                                                                                                                                                                vậy A ko chia hết cho 5                                                                                                                                                     B =   2 + 2^2 + 2^3 + ..... + 2^100                                                                                                                                                             2B =        2^2 + 2^3 +...................+ 2^101                                                                                                                                                   B = 2^101 - 2  = 2^100 . 2 -2   = (2^4)^25 . 2 - 2  =   16^25 .2 - 2  =  .....6 . 2 -2  =   .......2 - 2 = .......0                                                             vậy B chia hết cho 2                                                                                                                                                                                                 

27 tháng 1 2017

B1 :2n + 5 ⋮ n + 2

<=> 2n + 4 + 1 ⋮ n + 2

<=> 2(n + 2) + 1 ⋮ n + 2

=> 1 ⋮ n + 2 => n + 2 ∈ Ư(1) = { - 1; 1 }

Với n + 2 = - 1 => n = - 1 - 2 = - 3 

Với n + 2 = 1 => n = 1 - 2 = - 1

Vậy n = { - 3; - 1 }

B2 : A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + .... + ( 257 + 258 + 259 + 260 )

= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 257 ( 1 + 2 + 22 + 2)

= 2.( 1 + 2 + 4 + 8 ) + 25( 1 + 2 + 4 + 8 ) + ... + 257 ( 1 + 2 + 4 + 8 )

= 2.15 + 25 .15 + ... + 257 . 15

= 15(2 + 25 + .... + 257 ) chia hết cho 15 

Mà 15chia hết cho 3 => A chia hết cho 15 và 3 ( đpcm )

CM chia hết cho 7 tương tự nhá

19 tháng 10 2018

ta có A=2+2^2+2^3+2^4+2^5+2^6+.....+2^58+2^59+2^60

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)

A=14+2^3.(2+2^2+2^3)+.....+2^57.(2+2^2+2^3)

A=14+2^3.14+...+2^57.14

A=14.(1+2^3+...+2^57)\(⋮\)14

=> ĐPCM

19 tháng 10 2018

chia hết cho 2 và7 nhóm lại sẽ chia hết cho 7

23 tháng 12 2018

\(A=3+3^2+3^3+...+3^{20}\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)

\(A=3\left(1+3\right)+3^3\left(3+1\right)+...+3^{19}\left(1+3\right)\)

\(\Rightarrow A=4\left(3+3^3+...+3^{19}\right)\)

\(\Rightarrow A⋮4\)

23 tháng 12 2018

\(A=3+3^2+3^3+...+3^{20}\)

\(\Rightarrow3A=3^2+3^3+...+3^{20}+3^{21}\)

\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)

\(\Rightarrow2A=3^{21}-3\)

\(\Rightarrow A=\frac{3^{21}-3}{2}\)