Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2-6x+10
=(x^2-6x+9)+1
=(x-3)^2+1
vì (x-3)^2>=0 với mọi x nên (x-3)^2+1>0
Hay x^2-6x+10>0
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
\(x^2-x+\frac{1}{3}=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{1}{12}=\left(x-\frac{1}{2}\right)^2+\frac{1}{12}\ge\frac{1}{12}>0\)
Mà 1/12 > 0 nên biểu thức luôn lớn hơn 0 với mọi x
b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=2
a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x
Ta có:
\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(x^2-x+1>0\) với mọi \(x\in R\)
b)Ta có:
\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì \(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)
Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)
Đặt \(A=x-x^2-1\)\(\Rightarrow2A=2x-2x^2-2=-\left(x^2-2x+1\right)-x^2-1=-\left[\left(x-1\right)^2+x^2\right]-1< 0\)
\(\Rightarrow2A< 0\Rightarrow A< 0\)
\(4x^2+x+1=3x^2+x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=3x^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\in R\)