K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

a) \(\dfrac{a^2+3}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\ge2\sqrt{\sqrt{a^2+2}.\dfrac{1}{\sqrt{a^2+2}}}=2\)

Dấu = xảy ra khi \(\sqrt{a^2+2}=\dfrac{1}{\sqrt{a^2+2}}\Leftrightarrow a^2=-1\left(vn\right)\)

\(\Rightarrow\) Dấu "=" không xảy ra

Vậy \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)

b)Với x,y>0,ta cm bđt phụ sau:

\(x^3+y^3\ge xy\left(x+y\right)\) (1)

Thật vậy (1)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)

\(\Leftrightarrow\cdot\left(x+y\right)\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) có:

\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}=\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}.\sqrt{b}}\ge\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" xra khi a=b

Vậy...