Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vẽ tia HM là tia đối của tia AH , sao cho BH =HC
Xét tg AHB và AHC
Có : H là góc chung
BH=HC
AH=HM
Vậy : tg AHB= tg AHC
Nên : MC=AB ( tg AHB = tg AHC)
Có : AM < AC+CM (bdt)
Mà : AM=2AH và AC+CM=AC+AB
Nên : 2AH=AC+AB
=> AH=AC+B/2
Vậy đpcm ở câu a
b, từ rồi mk lm
vừa hôm qua thầy giáo giangrn hưng mình quên rồi. Mình vẫn nhớ thầy bảo A, H, K phải trùng nhau đấy
Hình thì bạn tự vẽ nha =))) Mik xin lỗi
a) Chứng Minh AB=BK
Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có :
B1 = B2 ( vì BD là tia p/giác của BAC )
BE là cạnh huyền chung
=) tam giác ABE = tam giác BEK ( ch - gn )
=) AB = AK ( 2 cạnh tương ứng )
b) Chứnh minh DK vuông góc với BC
Xét tam giác ABD và Xét tam giác KBD có :
AB = BK (cm ở câu a )
B1 = B2 vì ( BD là tia p/giác của BAC )
BD là cạnh chung
=) tam giác ABD = tam giác KBD ( cgc )
=) góc BKD = góc BAD ( 2 góc tương ứng )
mà góc BAD = 90o
=) góc KBD = 90o
=) DK vuông góc vs BC
c) CM IK // AC
a) Chứng Minh AB=BK
Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có :
B1 = B2 ( vì BD là tia p/giác của BAC )
BE là cạnh huyền chung
=) tam giác ABE = tam giác BEK ( ch - gn )
=) AB = AK ( 2 cạnh tương ứng )
b) Chứnh minh DK vuông góc với BC
Xét tam giác ABD và Xét tam giác KBD có :
AB = BK (cm ở câu a )
B1 = B2 vì ( BD là tia p/giác của BAC )
BD là cạnh chung
=) tam giác ABD = tam giác KBD ( cgc )
=) góc BKD = góc BAD ( 2 góc tương ứng )
mà góc BAD = 90o
=) góc KBD = 90o
=) DK vuông góc vs BC
c) CM IK // AC
a) Áp dụng Pytago dễ dàng tính được AC=4
b) Xét hai tam giác vuông ABD và HBD có
BD cạnh chung
góc ABD = góc HBD (BD là phân giác góc B)
Nên hai tam giác trên bằng nhau (cạnh huyền - góc nhọn)
Suy ra AB = BH
AD = DH
Suy ra BD là trung trực của AH (định lý 2)
c) Ý bạn là E là giao điểm của AH và BD?
Hay E là giao điểm của DH và AB?
Xét đường thẳng BC, có AH, AB lần lượt là đường vuông góc và đường xiên kẻ từ A đến BC. Do đó \(AH< AB\).
Chứng minh tương tự, ta được \(BK< BC\) và \(CL< CA\)
Cộng theo vế 3 BĐT vừa tìm được, ta có:
\(AH+BK+CL< AB+BC+CA\) (đpcm)