K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2015

Chứng minh tương đương:

BĐT <=> \(\left(\sqrt{a^2+b^2+c^2}\right)^2\le\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\)

<=> \(a^2+b^2+c^2\le\left(\left|a\right|\right)^2+\left(\left|b\right|\right)^2+\left(\left|c\right|\right)^2+2\left|a\right|\left|b\right|+2.\left|a\right|\left|c\right|+2\left|b\right|\left|c\right|\)

<=>  \(a^2+b^2+c^2\le a^2+b^2+c^2+2\left|ab\right|+2.\left|ac\right|+2\left|bc\right|\)

<=> \(0\le2\left|ab\right|+2.\left|ac\right|+2\left|bc\right|\) Luôn đúng với mọi a; b; c => đpcm

Dấu " = " xảy ra khi 2 trong 3 số a; b ; c = 0 

23 tháng 7 2019

Sửa đề: Chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Cách 1: Áp dụng BĐT Bunhiacopxki ta có đpcm.

Cách 2:BĐT \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (đúng)

Ta có đpcm.

Đẳng thức xảy ra khi a = b= c

18 tháng 2 2023

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\) ( dấu "=" xảy ra ⇔ a=b )

21 tháng 11 2018

T = (1+a)(1+b)(1+c) = 1 + (a + b + c) + (ab + bc + ac) + abc.

Áp dụng \(A+B+C\ge3\sqrt[3]{ABC}\left(A,B,C\ge0\right)\),

ta có: \(T\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}=\left(1+\sqrt[3]{abc}\right)^3\left(đpcm\right)\)

Chúc bạn học tốt

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

BĐT sai với $a=1,b=2, c=3$

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0

30 tháng 9 2018

Ta có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( Luôn đúng )

Dấu \("="\) hiển nhiên xảy ra khi \(a=b=c\)