\(3\left(a^2+b^2+c^2\right)\ge3\left(a+b+c\right)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

Sửa đề: Chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Cách 1: Áp dụng BĐT Bunhiacopxki ta có đpcm.

Cách 2:BĐT \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (đúng)

Ta có đpcm.

Đẳng thức xảy ra khi a = b= c

30 tháng 9 2018

Ta có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( Luôn đúng )

Dấu \("="\) hiển nhiên xảy ra khi \(a=b=c\)

16 tháng 8 2017

a,b dể tự làm nha

c)ta có:   \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow a^2+2ab+b^2-2ab-2ab\ge0\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)       mà a+b=1

\(\Rightarrow1\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)

lại có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\) mà \(ab\le\frac{1}{4}\)

tahy vào có     \(a^2+b^2\ge2\times\frac{1}{4}\Leftrightarrow a^2+b^2\ge\frac{1}{2}\left(dpcm\right)\)

16 tháng 8 2017

b mình tự làm, bạn làm phần a hộ mình với

10 tháng 10 2020

không đâu cá tiền luôn 500 đồng lun sợ gì :))))) đùa thui ko có đâu nhé

8 tháng 5 2016

Hoàn toàn chính xác

21 tháng 8 2017

a/ có \(a^2+b^2+c^2+\frac{3}{4}\ge-\left(a+b+c\right)\)

\(\Leftrightarrow a^2+a+\frac{1}{4}+b^2+b+\frac{1}{4}+c^2+c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng với mọi a,b,c)

b/ \(2a^2+2b^2+8-2ab+4\left(a+b\right)\ge0\)

\(\Leftrightarrow a^2+4a+4+b^2+4b+4+a^2+2ab+b^2\ge0\)

\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(a+b\right)^2\ge0\)(luôn đúng)

bài 2 áp dụng bất đẳng thức cô si cho 3 số dương ta có 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

bài 3: giả sử \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đẳng thức cô si cho 2 số dương ta có

\(\frac{x}{y}+\frac{y}{x}\ge2\)cmtt \(\Rightarrow\frac{x}{y}+\frac{y}{x}+\frac{z}{x}+\frac{x}{z}+\frac{y}{z}+\frac{z}{y}\ge6\)

áp dụng bất đăng thức trên ta đc

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)

bái 4: áp dụng bất đẳng thức cô si cho từng cái, nhân vế theo vế là đc nhé bn

27 tháng 5 2015

Chứng minh tương đương:

BĐT <=> \(\left(\sqrt{a^2+b^2+c^2}\right)^2\le\left(\left|a\right|+\left|b\right|+\left|c\right|\right)^2\)

<=> \(a^2+b^2+c^2\le\left(\left|a\right|\right)^2+\left(\left|b\right|\right)^2+\left(\left|c\right|\right)^2+2\left|a\right|\left|b\right|+2.\left|a\right|\left|c\right|+2\left|b\right|\left|c\right|\)

<=>  \(a^2+b^2+c^2\le a^2+b^2+c^2+2\left|ab\right|+2.\left|ac\right|+2\left|bc\right|\)

<=> \(0\le2\left|ab\right|+2.\left|ac\right|+2\left|bc\right|\) Luôn đúng với mọi a; b; c => đpcm

Dấu " = " xảy ra khi 2 trong 3 số a; b ; c = 0 

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

BĐT sai với $a=1,b=2, c=3$