K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

\(\Leftrightarrow2\sqrt{a\left(a+1\right)}-2a< 1\)

Lại có:\(2\sqrt{a\left(a+1\right)}\le a+a+1=2a+1\)

\(\Rightarrow2\sqrt{a\left(a+1\right)}-2a\le2a+1-2a=1\)

Dấu "=" không xảy ra

\(\Rightarrow\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)(đpcm)

14 tháng 10 2018

Tại sao dấu "=" không xảy ra ?

17 tháng 6 2021

Bài 1

a) Đặt VT = A

<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)

<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)

<=> 2A = \(\left(5-3\right)^2=4\)

<=> A = 2

b) Đặt VT = B

<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)

<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)

<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)

<=> B = 8 

Bài 2

Đặt VT = A

<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)

<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)

<=> \(A=\sqrt{\sqrt{5}+1}\)

26 tháng 6 2017

\(\dfrac{2}{xy}-\dfrac{2}{y\left(x+y\right)}-\dfrac{2}{x\left(x+y\right)}=\dfrac{2\left(x+y\right)-2x-2y}{xy\left(x+y\right)}=0\)

\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{\left(x+y\right)^2}}\)

\(=\sqrt{\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{y}\right)^2+\left(\dfrac{1}{x+y}\right)^2+2\times\dfrac{1}{x}\times\dfrac{1}{y}-2\times\dfrac{1}{y}\times\dfrac{1}{x+y}-2\times\dfrac{1}{x}\times\dfrac{1}{x+y}}\)

\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{x+y}\right)}\)

\(=\left|\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{x+y}\right|\left(\text{đ}pcm\right)\)

2 tháng 7 2018

ĐK: \(a\ge0;a\ne1\)

\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}.\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\)

\(=\frac{1+2\sqrt{a}+a}{\sqrt{a}+1}.\frac{1-2\sqrt{a}+a}{1-\sqrt{a}}\)

\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.\frac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}\)

\(=\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)\)

\(=1-a\)

10 tháng 3 2019

\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\left(\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}\right)\left(\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\right)\)

\(=\frac{a+2\sqrt{a}+1}{\sqrt{a}+1}.\frac{a-2\sqrt{a}+1}{1-\sqrt{a}}\)

\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.-\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)

\(=-\left(\sqrt{a}+1\right).\left(\sqrt{a}-1\right)\)

\(=1-a\)

25 tháng 8 2021

a)√x−1=2(x≥1)
\(x-1=4 \)
x=5
b)
\(\sqrt{3-x}=4\)
 (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19





 

a: Ta có: \(\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

hay x=5

b: Ta có: \(\sqrt{3-x}=4\)

\(\Leftrightarrow3-x=16\)

hay x=-13

c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)

\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)

\(\Leftrightarrow-2x=-\dfrac{47}{16}\)

hay \(x=\dfrac{47}{32}\)

d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)

\(\Leftrightarrow x-1=\dfrac{49}{4}\)

hay \(x=\dfrac{53}{4}\)

e: Ta có: \(\sqrt{x-1}-3=1\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

hay x=17

f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)

\(\Leftrightarrow x+2=\dfrac{1}{64}\)

hay \(x=-\dfrac{127}{64}\)

6 tháng 2 2016

Áp dụng BĐT cô si cho 2 số ko âm \(\sqrt{a}\) và \(\sqrt{b}\) ta được:

\(\sqrt{a}+\sqrt{b}\ge2\sqrt{\sqrt{ab}}\)

Suy ta: \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{ab}}}=\sqrt{\sqrt{ab}}=\sqrt[4]{ab}\)

=>điều cần chứng minh

8 tháng 10 2017

Thay \(x=\dfrac{1}{2}\left(a+\dfrac{1}{a}\right)\) vào chỗ \(\sqrt{x^2-1}\)