Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(a+b+c\ge3\sqrt[3]{abc}\)
Nhân 2 vế của đẳng thức trên ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3>=0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a^2+ab+b^2\right)>=0\)(luôn đúng)
Coi như a, b, c là số dương
Áp dụng BĐT Cô-si ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)
Dấu "=" xảy ra ...
\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)
Dấu "=" xảy ra ...
\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)
Dấu "=" xảy ra ...
Từ (1), (2), (3) ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra ...
Vậy ...
Lời giải:
Điều kiện: \(a>b\geq 0\)
Áp dụng BĐT Cô-si cho các số dương ta có:
\(a+\frac{4}{(a-b)(b+1)^2}=a-b+b+\frac{4}{(a-b)(b+1)^2}\)
\(=(a-b)+\frac{b+1}{2}+\frac{b+1}{2}+\frac{4}{(a-b)(b+1)^2}-1\)
\(\geq 4\sqrt[4]{(a-b).\frac{b+1}{2}.\frac{b+1}{2}.\frac{4}{(a-b)(b+1)^2}}-1\)
\(=4-1=3\)
Ta có đpcm
Dấu "=" xảy ra khi \(a-b=\frac{b+1}{2}=\frac{4}{(a-b)(b+1)^2}\Leftrightarrow a=2; b=1\)
Sai đề:
Thử với \(A=B=C=60^0\) thay vào ta được:
\(-\dfrac{3}{2}=-1+\dfrac{1}{8}\) (vô lí)
Ta có: \(a^2+\dfrac{1}{4}\ge a\)
Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)
Cộng 3 cái vế theo vế ta được ĐPCM