Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện là \(xy\ne0\)
BĐT tương đương:
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(x^2+y^2-xy\right)\left(x-y\right)^2}{x^2y^2}\ge0\) (luôn đúng)
\(a,VT=\dfrac{3y\cdot2x}{4\cdot2x}=\dfrac{6xy}{8x}=VP\\ b,VT=\dfrac{\left(x+y\right)\cdot3a\left(x+y\right)}{3a\cdot3a\left(x+y\right)}=\dfrac{3a\left(x+y\right)^2}{9a^2\left(x+y\right)}=VP\)
Note \(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+2\)
Nên ta sẽ đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\ge2\). Khi đó
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2+2\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(t^2+2\ge3t\Leftrightarrow\left(t-2\right)\left(t-1\right)\ge0\)
BĐT cuối đúng vì \(t\ge 2\)
\(VT=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)
\(=\dfrac{2x+4\sqrt{xy}+2y}{2\left(x-y\right)}=\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(x-y\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(a,VT=\dfrac{x^2+2xy+4-3x^2-3xy}{\left(x+y\right)\left(x+2y\right)}=\dfrac{-2x^2-xy+4}{\left(x+y\right)\left(x-2y\right)}=VP\\ b,VP=\dfrac{\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}=VT\)
\(BDT\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x-y\right)^2}{xy}\)
\(\Leftrightarrow\dfrac{\left[\left(x-y\right)\left(x+y\right)\right]^2}{x^2y^2}-\dfrac{3\left(x-y\right)^2}{xy}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2}{x^2y^2}-\dfrac{3}{xy}\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2-3xy}{x^2y^2}\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\) (luôn đúng)
\(BĐT\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{x+z}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{3}{2}+3=\dfrac{9}{2}\\ \Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge9\left(1\right)\)
Áp dụng BĐT Cauchy:
\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nhân vế theo vế 2 BĐT ta được
\(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge3\cdot3\sqrt[3]{1}=9\)
Do đó \(\left(1\right)\) luôn đúng
Vậy ta được đpcm
\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)
\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)
\(x=0;y=0\Leftrightarrow B=0\)
Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)
Vậy \(A\ne B\)
Lời giải:
Nếu $x,y$ trái dấu: Ta thấy vế trái luôn lớn hơn $0$, còn vế phải sẽ nhỏ hơn $0$ do \(x,y\) trái dấu thì \(\frac{x}{y}; \frac{y}{x}< 0\)
Do đó \(\text{VT}> \text{VP}(1)\)
Nếu $x,y$ cùng dấu:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4-3\left(\frac{x}{y}+\frac{y}{x}\right)=\left(\frac{x}{y}+\frac{y}{x}\right)^2+2-3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(=t^2+2-3t=(t-1)(t-2)\) với \(t=\frac{x}{y}+\frac{y}{x}\)
Áp dụng BĐT Cô-si cho 2 số dương:
\(t=\frac{x}{y}+\frac{y}{x}\geq 2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
\(\Rightarrow t-1>0; t-2\geq 0\Rightarrow (t-1)(t-2)\geq 0\)
Hay \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\geq 3(\frac{x}{y}+\frac{y}{x})\) (2)
Từ $(1);(2)$ ta có đpcm
Dấu bằng xảy ra khi \(x=y\neq 0\)