\(\dfrac{1}{10}\) biet :

A=\(\dfrac{1}{2.9}+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

\(\dfrac{5}{2}A=\dfrac{5}{4.9}+\dfrac{5}{9.14}+\dfrac{5}{14.19}+...+\dfrac{5}{504.509}\)

\(\dfrac{5}{2}A=\dfrac{9-4}{4.9}+\dfrac{14-9}{9.14}+\dfrac{19-14}{14.19}+...+\dfrac{509-504}{504.509}\)

\(\dfrac{5}{2}A=\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{504}-\dfrac{1}{509}\)

\(\dfrac{5}{2}A=\dfrac{1}{4}-\dfrac{1}{509}\)

\(A=\left(\dfrac{1}{4}-\dfrac{1}{509}\right).\dfrac{2}{5}\)

\(A=\dfrac{1}{10}-\dfrac{2}{2545}< \dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{1}{10}\)(đpcm)

Chúc bạn học tốt!hehe

4 tháng 5 2018

Ta có:

A=\(\dfrac{1}{2.9}+\dfrac{1}{9.7}+\dfrac{1}{7.19}+...+\dfrac{1}{252.509}\)

A=2.(\(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{504.509}\))

A=\(\dfrac{2}{5}\).(\(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{504}-\dfrac{1}{509}\))

A=\(\dfrac{2}{5}\).(\(\dfrac{1}{4}-\dfrac{1}{509}\))

A=\(\dfrac{2}{5}\).(\(\dfrac{509}{2036}-\dfrac{4}{2036}\))

A=\(\dfrac{2}{5}\).\(\dfrac{505}{2036}\)

A=\(\dfrac{101}{1018}\)

A=1/2.9+1/9.7+1/7.19+...+1/252.509

=?

??????

23 tháng 3 2017

b)\(\dfrac{1}{7}B=\dfrac{1}{10.18}+\dfrac{1}{18.26}+\dfrac{1}{26.34}+...+\dfrac{1}{802.810}\)

\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{8}{10.18}+\dfrac{8}{18.26}+\dfrac{8}{26.34}+...+\dfrac{8}{802.810}\right)\)

\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{34}+...+\dfrac{1}{802}-\dfrac{1}{810}\right)\)

\(\dfrac{1}{7}B=\dfrac{1}{8}\left(\dfrac{1}{10}-\dfrac{1}{810}\right)\)

\(\dfrac{1}{7}B=\dfrac{1}{8}.\dfrac{8}{81}\)

\(\dfrac{1}{7}B=\dfrac{1.8}{8.81}\)

\(\dfrac{1}{7}B=\dfrac{1}{81}\)

\(B=\dfrac{1}{81}:\dfrac{1}{7}\)

\(B=\dfrac{7}{81}\)

23 tháng 3 2017

ê cu bn chơi ngọc rồng à có ac bang bang ko mk mượn

20 tháng 3 2017

— S = 1/4 + 2/4 +...+10/4 (1)

= 1 + 1/4 + 2/4 +...+ 9/4 (2)

=> Lấy (2) trừ đi (1) ta được:

1 — 10/4 = —6/4

Vì 14 = 14/1 = 84/6 mà —6/4 < 84/6

Do đó S < 14

21 tháng 3 2017

Cậu có có thể giúp mk 2 câu tiếp theo đc ko

19 tháng 6 2019

Đặt \(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)

\(\Leftrightarrow A=\frac{2}{5}.\frac{505}{2036}\)

\(\Leftrightarrow A=\frac{101}{1018}\)

~ Hok tốt ~

19 tháng 6 2019

#)Giải :

\(A=\frac{1}{2.9}+\frac{1}{9.7}+\frac{1}{7.19}+...+\frac{1}{252.509}\)

\(A=\frac{2}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{504.509}\right)\)

\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{504}-\frac{1}{509}\right)\)

\(A=\frac{2}{5}\left(\frac{1}{4}-\frac{1}{509}\right)\)

\(A=\frac{2}{5}\times\frac{505}{2036}\)

\(A=\frac{101}{1018}\)

12 tháng 8 2018

Ta có :

\(A=\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{1}{12}+\dfrac{1}{12}+...+\dfrac{1}{12}\left(6PS\right)\)

\(\dfrac{1}{12}+\dfrac{1}{12}+...+\dfrac{1}{12}=6.\dfrac{1}{12}=\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}\)

\(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{1}{2}\\ \dfrac{1}{10}>\dfrac{1}{12}\\ \dfrac{1}{12}=\dfrac{1}{12}\\ ...\\ \dfrac{1}{20}< \dfrac{1}{12}\)

⇒Cộng 2 vế, ta có:

\(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+...+\dfrac{1}{20}< \dfrac{6}{12}=\dfrac{1}{2}\)

Vậy A<\(\dfrac{1}{2}\)

9 tháng 8 2018

Ta có : A = 1/10 + 1/12 + 1/14 + ... + 1/20 > 1/20 + 1/20 + ... + 1/20 . ( 10 số hạng ) = 1/20 * 10 . = 1/2 . Do đó A > 1/2 . Vậy bài toán được chứng minh .

12 tháng 8 2018

Bạn đếm lại dãy số xem có bao nhiêu phân số tất cả

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)

1 tháng 5 2017

Kiyoko Vũ

a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6

b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath

16 tháng 3 2018

a, Ta có :

\(\dfrac{1}{6}< \dfrac{1}{5}\)

\(\dfrac{1}{7}< \dfrac{1}{5}\)

.................

\(\dfrac{1}{9}< \dfrac{1}{5}\)

\(\dfrac{1}{10}=\dfrac{1}{10}\)

\(\dfrac{1}{11}< \dfrac{1}{10}\)

..................

\(\dfrac{1}{17}< \dfrac{1}{10}\)

\(\Leftrightarrow\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+......+\dfrac{1}{17}< \dfrac{1}{5}+\dfrac{1}{5}+....+\dfrac{1}{5}\)

\(\Leftrightarrow A< \dfrac{1}{5}.5+\dfrac{1}{10}.8\)

\(\Leftrightarrow A< 1+\dfrac{4}{5}=\dfrac{9}{5}< 2\)

\(\Leftrightarrow A< 2\left(đpcm\right)\)

b/ Ta có :

\(\dfrac{1}{11}>\dfrac{1}{30}\)

\(\dfrac{1}{12}>\dfrac{1}{30}\)

...............

\(\dfrac{1}{29}>\dfrac{1}{30}\)

\(\dfrac{1}{30}=\dfrac{1}{30}\)

\(\Leftrightarrow\dfrac{1}{11}+\dfrac{1}{12}+........+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+.......+\dfrac{1}{30}\)

\(\Leftrightarrow B>\dfrac{1}{30}.20=\dfrac{2}{3}\)

\(\Leftrightarrow B>\dfrac{2}{3}\left(đpcm\right)\)