K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác ABDC có

AD cắt BC tại trung điểm của mỗi đường

nên ABDC là hình bình hành

Suy ra: vecto AC=vecto BD

6 tháng 12 2018

Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Gọi trung điểm của AD là I, trung điểm BC là J.

Khi đó ta có: Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Mà theo quy tắc ba điểm ta có:

Giải bài 9 trang 12 sgk Hình học 10 | Để học tốt Toán 10

⇔ I ≡ J hay trung điểm AD và BC trùng nhau (đpcm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Vậy ta có điều phải chứng minh.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Với 4 điểm A, B, C, D ta có: \(\overrightarrow {AB}  = \overrightarrow {CD} \) khi và chỉ khi tứ giác ABDC là hình bình hành

Theo tính chất của hình bình hành thì giao điểm của hai đường chéo là trung điểm của mỗi đường và ngược lại.

Nói cách khác: trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Vậy ta có điều phải chứng minh.

30 tháng 3 2017

Nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì AD và BC có trung điểm trùng nhau. Gọi I là trung điểm của AD ta chứng minh I cũng là trung điểm của BC.

Theo quy tắc của ba điểm của tổng, ta có

\(\overrightarrow{AB}=\overrightarrow{AI}+\overrightarrow{IB};\overrightarrow{CD}=\overrightarrow{CI}+\overrightarrow{ID}\)

\(\overrightarrow{AB}=\overrightarrow{CD}\) nên \(\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\)

\(\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)

\(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{CI}+\overrightarrow{BI}\left(1\right)\)

Vì I là trung điểm của AD nên \(\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\left(2\right)\)

Từ (1) và (2) suy ra \(\overrightarrow{CI}+\overrightarrow{BI}=\overrightarrow{0}\left(3\right)\)

Từ (3) ta có chung điểm I, ta chứng minh \(\overrightarrow{AB}=\overrightarrow{CD}\)

I là trung điểm AD \(\Rightarrow\overrightarrow{AI}+\overrightarrow{DI}=\overrightarrow{0}\Rightarrow\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{0}\)

I là trung điểm BC \(\Rightarrow\overrightarrow{CI}+\overrightarrow{BI}=0\Rightarrow\overrightarrow{CI}-\overrightarrow{IB}=\overrightarrow{0}\)

Suy ra \(\overrightarrow{AI}-\overrightarrow{ID}=\overrightarrow{CI}-\overrightarrow{IB}\)

\(\Rightarrow\overrightarrow{AI}+\overrightarrow{IB}=\overrightarrow{CI}+\overrightarrow{ID}\Rightarrow\overrightarrow{AB}=\overrightarrow{CD}\)





19 tháng 5 2017

A B C D P M
a) \(\overrightarrow{MP}.\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{MA}+\overrightarrow{MD}\right).\left(\overrightarrow{BM}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}+\overrightarrow{MD}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}-\overrightarrow{MB}.\overrightarrow{MD}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(0+0\right)=0\) (vì \(AC\perp BD\) nên \(\overrightarrow{MA}.\overrightarrow{BM}=0;\overrightarrow{MD}.\overrightarrow{MC}=0\)).
Vậy \(\overrightarrow{MP}.\overrightarrow{BC}=0\) nên \(MP\perp BC\).

Xét ΔMDC có N là trung điểm của DC

nên \(2\cdot\overrightarrow{MN}=\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{MB}+\overrightarrow{BC}=\overrightarrow{AD}+\overrightarrow{BC}\)

29 tháng 12 2023

Xét ΔBAD có BM là đường trung tuyến

nên \(\overrightarrow{BM}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)\)

\(=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BN}=\overrightarrow{BA}+\overrightarrow{AN}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

=>\(\overrightarrow{BM}=\dfrac{5}{6}\cdot\overrightarrow{BN}\)

=>B,M,N thẳng hàng

21 tháng 2 2016

Lấy M là trung điểm của CD

\(AC^2-AD^2=BC^2-BD^2\)

<=> \(\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\left(\overrightarrow{AC}+\overrightarrow{AD}\right)=\left(\overrightarrow{BC}-\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

<=> \(2.\overrightarrow{DC}.\overrightarrow{AM}=2.\overrightarrow{DC}.\overrightarrow{BM}\)

<=> \(2.\overrightarrow{DC}.\left(\overrightarrow{AM}-\overrightarrow{BM}\right)=0\)

<=> \(2.\overrightarrow{DC}.\overrightarrow{AB}=0\)

<=> DC vuông góc với AB

21 tháng 2 2016

1/Tìm x biết: (1/2x-1004)^2008 = (1/2x-1004)^2006 
2/Cho tam giác ABC cân tại A. D là 1 điểm nằm trong tam giác, biết góc ADB > góc ADC. Chứng minh: DB<DC
giúp e với

31 tháng 12 2023

Xét ΔBAD có BI là đường trung tuyến

nên \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

=>\(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{3}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AM}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)

=>\(\overrightarrow{BI}=\dfrac{5}{6}\cdot\overrightarrow{BM}\)

=>B,I,M thẳng hàng

25 tháng 12 2023

Cách 1: Dùng định lý Menelaus đảo:

Từ đề bài, ta có \(\dfrac{BD}{BC}=\dfrac{2}{3}\)\(\dfrac{MC}{MA}=\dfrac{3}{2}\)\(\dfrac{IA}{ID}=1\)

\(\Rightarrow\dfrac{BD}{BC}.\dfrac{MC}{MA}.\dfrac{IA}{ID}=1\)

Theo định lý Menelaus đảo, suy ra B, I, M thẳng hàng.

Cách 2: Dùng vector

 Ta có \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}.\dfrac{2}{3}\overrightarrow{BC}\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) 

\(=\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

Lại có \(\overrightarrow{BM}=\dfrac{MC}{AC}\overrightarrow{BA}+\dfrac{MA}{AC}\overrightarrow{BC}\)

\(=\dfrac{3}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

\(=\dfrac{1}{5}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}.\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}\overrightarrow{BI}\)

Vậy \(\overrightarrow{BM}=\dfrac{6}{5}\overrightarrow{BI}\), suy ra B, I, M thẳng hàng.