Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
ta có (a+b+c)(1/a+1/b+1/c)=1+b/a+c/a+a/b+1+c/b+a/c+b/c+1=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
ta có (a-b)2>0suy ra a/b+b/a> hoặc =2
suy ra (a+b+c)(1/a+1/b+1/c)>hoặc=9
suy ra 1/a+1/b+1/c>hoặc=9/a+b+c
Đặt A = (a + 2)2 - (a - 2)2 (Hằng đẳng thức số 3)
=> A = (a + 2 - a + 2)(a + 2 + a - 2)
=> A = 4.2a \(⋮4\)với mọi a
Vậy (a + 2)2 - (a - 2)2 chia hết cho 4 (Điều phải chứng minh)
Ta có :
\(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=\left(a+2-a+2\right)\left(a+2+a-2\right)\)
\(=4.2a\)
\(=8a\)
Mà \(a\in Z\Leftrightarrow8a⋮4\)
\(\Leftrightarrow\left(a+2\right)^2-\left(a-2\right)^2⋮4\left(đpcm\right)\)
(a+b+c)2\(\ge\) 3(ab+bc+ca) (*)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\) 3ab+3bc+3ca
=>a2+b2+c2\(\ge\) ab+bc+ca
nhân 2 vào cho 2 vế ta được:
2a2+2b2+2c2\(\ge\) 2ab+2bc+2ca
=> (a+b)2+(b+c)2+(c+a)2\(\ge\) 0 (đúng)
=> (*) đúng
1. Đ
2 S ( lớn hơn hoặc =.)
3S ( thêm hoặc =. vd x = 0)
4Đ
5S ( với mọi x >0)
6Đ
7Đ
\(a^4+1-a\left(a^2+1\right)=a^4+1-a^3-a=\left(a^4-a\right)-\left(a^3-1\right)\)
\(=a\left(a^3-1\right)-\left(a^3-1\right)=\left(a-1\right)\left(a^3-1\right)\)
\(=\left(a-1\right)\left(a-1\right)\left(a^2+a+1\right)=\left(a-1\right)^2\left[\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\right]\ge0\forall a\)(đpcm)