Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(x^2+6x+13=x^2+6x+9+4=\left(x+3\right)^2+4\)
Do \(\left(x+3\right)^2\ge0\)với mọi x
Nên \(\left(x+3\right)^2+4\ge4>0\)với mọi x
Hay \(x^2+6x+13>0\)với mọi x
2/ Ta có: x2 + 6x + 13 = x2 + 2.3x + 9 +4 = ( x + 3)2 + 4
Ta có: (x+3)2 >0 (với mọi x)
Nên (x+3)2 + 4 \(\ge\)4 >0.
3/ Ta có: - x2+6x-11 = - (x2-6x+11) = - (x2-2.3x+9+2) = - (x-3)2-2
Ta có: (x-3)2>0 với mọi x
Nên - (x-3)2<0 với mọi x
Suy ra - (x-3)2-2 \(\le\)- 2 <0
4/ Ta có: x - y = 5
Suy ra (x - y)2 = 25
\(\Leftrightarrow\) x2 - 2xy + y2 = 25
\(\Leftrightarrow\)x2 - 2.24 + y2 = 25
\(\Leftrightarrow\) x2 + y2 = 73
Ta có: x3 - y3 = (x - y).(x2 + xy + y2 ) = 5.(73 + 24) =485
ta có:
-(-x+x2+3)
-(x2-2.x.1/2 + (1/2)2+11/4)
-((x-1/2)2+11/4))
-(x-1/2)2-11/4
-(x-1/2)2 bé hơn hoặc bằng 0
-11/4 bé hơn không
=>-(x-1/2)2-11/4 < 0 với mọi x
x^2 + y^2 +2xy = (x+y)^2 >=0 với mọi x,y
suy ra x^2 + y^2 + 2xy + 4 >0 với mọi x,y
Ta có :9x2+6x+2
=(3x)2+6x+1+1
=(3x+1)2+1
Vì \(\left(3x+1\right)^2\ge0\)
Suy ra:\(\left(3x+1\right)^2+1\ge1\left(đpcm\right)\)
Bài 1:
\(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy x = 1 hoặc x = -1
Bài 2:
\(2x-2x^2-1=-2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-2\left(x^2-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\)
\(\Rightarrowđpcm\)
đề đúng, đặt A = x+1/x ta có
A= (x2 +1)/x
với mọi x>0 ta luôn có( x2+1)/x > 2
dấu = chỉ xảy ra khi x = 1
1. Đ
2 S ( lớn hơn hoặc =.)
3S ( thêm hoặc =. vd x = 0)
4Đ
5S ( với mọi x >0)
6Đ
7Đ