Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=4+22+23+24+...+220
22+22+23+24+...+220
=>2M=23+23+24+25+...+221
=>2M-M=(23+23+24+25+...+221)-(22+22+23+24+...+220)
=>M=221+23-22-22
=221
M = 4 + 22 + 23 + 24 + ... + 220
2M = 8 + 23 + 24 + ..... + 221
2M - M = (23 - 23) + .... + (220 - 220) + 221 + (8 - 4 - 22)
M = 221
M là lũy thừa của 2 với số mũ là 21
=> ĐPCM
A=1+2+22+23+...+2200
2A=2+22+23+24+...+2201
2A-A=(2+22+23+24+...+2201) - (1+2+22+23+...+2200)
A=2201-1
=>A+1=2201
B=3+32+33+...+32005
3B=32+33+34+...+32006
3B-B=(32+33+34+...+32006) - (3+32+33+...+32005)
2B=32006-3
2B+3=32006 là lũy thừa của 3 (đpcm)
A = 1 + 2 + 22 + 23 + ... + 2200
2A = 2 + 22 + 23 + 24 + ... + 2201
2A - A = ( 2 + 22 + 23 + 24 + ... + 2201 ) - ( 1 + 2 + 22 + 23 + ... + 2200 )
A = 2201 - 1
a) A = 22007-1 => A + 1 = 22007
b) Do 2B = 3B - B = 32006- 3 => 2B + 3 = 32006
c) C = 4 + 22 + 23+...+22005 = 22 + 23 + ...+ 22005 + 4
2C - C = 22006 - 22 + 4 =22006 - 22 + 22 = 22006
\(A=1+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)
\(\Rightarrow A+1\)là một lũy thừa
đpcm
Bài 2
A = 1 + 2 + 22 + 23 + ... + 2200
2A = 2 + 22 + 23 + 24 + ... + 2201
2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
Bài 3
B = 3 + 32 + 33 + ... + 32005
3B = 32 + 33 + 34 + ... + 32006
3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)
2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3
=> 2B + 3 = 32006
\(\Rightarrow2A=8+2^3+...+2^{2022}\\ \Rightarrow2A-A=8+2^3+...+2^{2022}-4-2^2-...-2^{2021}\\ \Rightarrow A=8+2^{2022}-4-2^2=8-4-4+2^{2022}=2^{2022}\left(đpcm\right)\)
\(A=2^2+2^2+2^3+...+2^{2021}=2^3+2^4+...+2^{2021}=2^{2022}\left(đpcm\right)\)
A=đã cho
=>2A=8+2^3+2^4+...+2^21
=>2A-A=8-4+2^21-2^2
=>A=2+2^21-4
=>A=2^21
Vậy...
Lưu ý ^ là số mũ
=>2A=8+2^3+2^4+...+2^21
=>2A-A=8-4+2^21-2^2
=>A=2+2^21-4
=>A=2^21
Vậy...