Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: C
Ta có số 99 5 có chữ số tận cùng là 9
Số 98 4 có chữ số tận cùng là 6
Số 97 3 có chữ số tận cùng là 3
Số 96 2 có chữ số tận cùng là 6
Nên phép tính 99 5 - 98 4 + 97 3 - 96 2 có chữ số tận cùng là 0(do9–6+3–6=10)
Do đó kết quả của phép tính 99 5 - 98 4 + 97 3 - 96 2 chia hết cho cả 2 và 5.
a, 995 - 984 + 973 - 962
= (…9 ) - (…6) + (…3) - (…6)
= 0
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5 tick minh nha
1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Số chia hết cho 2 mà không chia hết cho 5 thì có chữ số cuối chẵn khác 0 nên các số thỏa mãn là: 954;984;648
Số chia hết cho 2 mà không chia hết cho 5 thì có chữ số cuối chẵn khác 0 nên các số thỏa mãn là: 954;984;648
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
A={956;958;960;...;982}
các bạn li-ke mình cho tròn 300 với
Để số tự nhiên n chia hết cho 2 và chia hết cho 5 thì chữ số tận cùng của n là 0
Suy ra : n thuộc { 960 ; 970 ; 980 }
1/
$942^2\equiv -1\pmod 5$
$\Rightarrow 942^{60}=(942^2)^{30}\equiv (-1)^{30}\equiv 1\pmod 5$
$351\equiv 1\pmod 5\Rightarrow 351^{37}\equiv 1^{37}\equiv 1\pmod 5$
$\Rightarrow 942^{60}-351^{37}\equiv 1-1\equiv 0\pmod 5$
$\Rightarrow 942^{60}-351^{37}$ chia hết cho 5.
2/
$99^5$ lẻ
$98^4$ chẵn
$\Rightarrow 99^5-98^4$ lẻ.
$97^3$ lẻ
$96^2$ chẵn
$\Rightarrow 97^3-96^2$ lẻ.
$\Rightarrow 99^5-98^4+97^3-96^2$ là tổng của hai số lẻ, nên là số chẵn, hay $99^5-98^4+97^3-96^2$ chia hết cho 2.
Mặt khác:
$99\equiv -1\pmod 5\Rightarrow 99^5\equiv (-1)^5\equiv 1\pmod 5$
$98\equiv -2\pmod 5\Rightarrow 98^4\equiv (-2)^4\equiv 2^4\pmod 5$
$97\equiv 2\pmod 5\Rightarrow 97^3\equiv 2^3\pmod 5$
$96\equiv 1\pmod 5\Rightarrow 96^2\equiv 1^2\equiv 1\pmod 5$
Do đó:
$99^5-98^4+97^3-96^2\equiv 1-2^4+2^3-1\equiv -8\equiv 2\pmod 5$
Do đó $99^5-98^4+97^3-96^2$ không chia hết cho 5.