Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{\left(2^8-2^6\right)^3}{64^4}=\dfrac{27}{64}\)
\(\dfrac{192^3}{64^4}=\dfrac{27}{64}\)
\(\dfrac{\left(3\times64\right)^3}{64^3\times64}=\dfrac{27}{64}\)
\(\dfrac{3^3\times64^3}{64\times64^3}=\dfrac{27}{64}\)
\(\dfrac{3^3}{64}=\dfrac{27}{64}\)
\(\dfrac{27}{64}=\dfrac{27}{64}\)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\\ \dfrac{6^6+6^3+3^3+3^6}{-73}=\dfrac{46656+216+27+729}{-73}=-\dfrac{47628}{73}\\ \dfrac{27^7+3^{15}}{9^9-27}=\dfrac{\left(3^3\right)^7+3^{15}}{\left(3^2\right)^9-3^3}=\dfrac{3^{21}+3^{15}}{3^{18}-3^3}=\dfrac{3^{15}\left(3^6+1\right)}{3^3\left(3^{15}-1\right)}=\dfrac{3^5\cdot730}{3^{15}-1}\\ \dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
\(A=10^5-5^6\)
\(A=5^5\cdot2^5-5^6\)
\(A=5^5\cdot\left(2^5-5\right)\)
\(A=5^5\cdot\left(32-5\right)\)
\(A=5^5\cdot27\)
Mà: \(5^5\cdot27\) ⋮ 27
\(\Rightarrow A\) ⋮ 27
Ta có A = 105 - 56 = 55( 25 - 5) = 55 . 27
A ⋮ 27 vì 27 ⋮ 27
Vậy A ⋮ 27
(-3/4)63x-1=(3/4)^3
3x-1=3+1
3x=3=1
x=4;3
x=4/3
Vậy x=4/3
Lời giải:
$(64.27)^6.75^{18}=(2^6.3^3)^6.(3.5^2)^{18}=2^{36}.3^{18}.3^{18}.5^{36}$
$=2^{36}.3^{36}.5^{36}=(2.3.5)^{36}=30^{36}$