Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=1.2.3.....99.100.(\(1+\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{99}+\dfrac{1}{100}\))
\(=1.2.3...100\left[\left(1+\dfrac{1}{100}\right)+\left(\dfrac{1}{2}+\dfrac{1}{99}\right)+......+\left(\dfrac{1}{50}+\dfrac{1}{51}\right)\right]\)
=>A= 1.2...100.\(\left[\dfrac{101}{100}+\dfrac{101}{2.99}+......+\dfrac{101}{50.51}\right]\)
=1.2.....100.101\(\left[\dfrac{1}{100}+\dfrac{1}{2.99}+.....+\dfrac{1}{50.51}\right]⋮101\)
Vậy A chia hết cho 101
\(M=\frac{\left(2.4....98.100\right).\left(51.52....99.100\right)}{\left(2.4....98.100\right).\left(1.3....97.99\right).2^{50}}\)
\(M=\frac{\left(2.1\right).\left(2.3\right)....\left(2.49\right).\left(2.50\right).51.52....99.100}{1.2......99.100.2^{50}}\)
\(M=\frac{2^{50}.\left(1.2....99.100\right)}{\left(1.2....99.100\right).2^{50}}\)\(=1\)
Vậy M =1
Chúc bạn học tốt ( -_- )
\(M=\frac{51.52...99.100}{1.3...97.99.2^{50}}\)
\(=\frac{\left(1.2.3...50\right).51.52...99.100}{1.3...97.99.2^{50}.\left(1.2.3...50\right)}\)
\(=\frac{1.2.3...99.100}{1.3...97.99.\left(2.4.6...100\right)}\)
\(=\frac{1.2.3...99.100}{1.2.3...99.100}\)
C=\(\frac{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}{4}\)
Chứng mình rằng stn A chia hết cho 101 với A = 1.2.3...99.100. ( 1+ 1/2 + 1/3 + ....+ 1/99 + 1/100 )
A=1•2•3•...•100
(1+1/100)+(1/2+1/99)+(1/3+1/98)+...+(1/50+1/51)
=1•2•3•100
=(101/100+101/2*99+101/3*98+...+101/50*51)
=1•2•3...100
(101/100+101/2*99+101/3*98+...+1/50*51)
Vì 101:101 => A :101
Nhớ k cho mình nha