K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

Câu hỏi của Đào Đức Mạnh - Toán lớp 6 - Học toán với OnlineMath

Click vào cái đó 

1 tháng 11 2015

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

1 tháng 11 2015

tất cả đều có trong câu hỏi tương tự

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa

20 tháng 9 2023

a) Ta có:

\(A=4+4^2+4^3+...+4^{90}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{89}+4^{90}\right)\)

\(A=20+4^2.\left(4+4^2\right)+...+4^{88}.\left(4+4^2\right)\)

\(A=20+4^2.20+...+4^{88}.20\)

\(A=20.\left(1+4^2+...+4^{88}\right)\)

Vì \(20⋮5\) nên \(20.\left(1+4^2+...+4^{88}\right)⋮5\)

Vậy \(A⋮5\)

____________

b) Ta có:

\(A=4+4^2+4^3+...+4^{90}\)

\(A=\left(4+4^2+4^3\right)+...\left(4^{88}+4^{89}+4^{90}\right)\)

\(A=84+...+4^{87}.\left(4+4^2+4^3\right)\)

\(A=84+...+4^{87}.84\)

\(A=84.\left(1+...+4^{87}\right)\)

Vì \(84⋮21\) nên \(84.\left(1+...+4^{87}\right)⋮21\)

Vậy \(A⋮21\)

\(#WendyDang\)

 

17 tháng 1 2017

a) A=4+42+43+...4100 => 4A=42+43+44+...+4101

=> 4A-A=4101-4 <=> 3A=4101-4 <=> 3A-4=4101 =>đpcm

b) Tương tự

24 tháng 9 2017

Minh Quân yêu Thanh Hiền

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

21 tháng 8 2023

loading...

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

26 tháng 11 2015

1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)

\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)

Vậy chia hết cho 30

\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)

\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)

Vậy chia hết cho 31

 

4 tháng 1 2017

haizzzzzzzzzzz câu 2 làm tek nào z