K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

Gọi ƯCLN(2k+1; 2k+3) là d. Ta có:

2k+1 chia hết cho d

2k+3 chia hết cho d

=>2k+3 - (2k+1)chia hết chio d => 2 chia hết chi d

Mà 2k +1 và 2k+3 đều là số lẻ không chia hết cho 2

=> d\(\ne\) 2

=>d=1

=>2k+1 và 2k+3 nguyên tố cùng nhau.

30 tháng 12 2018

theo mình thế này mới đúng 

 Vì a < b  và a và b là 2 số tự nhiên liên tiếp => b = a + 1

Gọi ƯCLN(a,b) = d

=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)

=> \(a+1-a⋮d=>1⋮d\)

=> \(d\inƯ\left(1\right)=>d=1\)

Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau 

30 tháng 12 2018

Nếu a<b thì b=a+1 rồi làm tượng tự từ chỗ " Gọi....." thôi. Ko cần phải dài dòng như vậy đâu, bài này mk làm nhiều rồi

24 tháng 10 2015

Gọi ƯC(2k+1,9k+4)=d

Ta có: 2k+1 chia hết cho d=>9.(2k+1)=18k+9 chia hết cho d

           9k+4 chia hết cho d=>2.(9k+4)=18k+8 chia hết cho d

=>18k+9-(18k+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2k+1,9k+4)=1

=>2k+1 và 9k+4 là 2 số nguyên tố cùng nhau

19 tháng 12 2015

gọi d là ƯCLN(2n+3;n+1)

Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)

         2n+3 chia hết cho d(2)

Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d

                           hay 1 chia hết cho d

Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)

19 tháng 12 2015

làm ơn làm phước cho mk 3 tick đi mk mà

please

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.