K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2024

Chứng minh cái gì? chắc là so sánh

\(7^{714}< 8^{714}\)

\(2^{1999}>2^{1998}=\left(2^3\right)^{666}=8^{666}\)

\(\Rightarrow2^{1999}>8^{666}>8^{714}>7^{714}\)

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

30 tháng 5 2018

Mình xin trả lời:

212 =1025; 7=343 => 210 < 3.7=> (210)238  <3238 .(73)238 => 22380< 3238 . 7714

28= 256; 3=243=> 35 < 2

Ta có : 3238= 33. 2225 = 33. (3547 < 25. 2376 => 3328 < 2381

22380 < 2238 . 7714 => 21999 < 714 mà 21999> 21993 => 21993< 7714

,

Ê bạn vào chỗ https://olm.vn/hoi-dap/question/911743.html

11 tháng 8 2021

      \(2^{10}=1024< 1029=3.7^3\)

\(\Leftrightarrow\left(2^{10}\right)^{238}< \left(3.7^3\right)^{238}\)

\(\Leftrightarrow2^{2380}< 3^{238}.7^{714}\) \(\left(1\right)\)

      \(3^5=243< 256=2^8\) \(\left(2\right)\)

      \(3^3=27< 32=2^5\) \(\left(3\right)\)

      Từ \(\left(2\right)\), \(\left(3\right)\) ta có:

      \(3^{328}=3^3.3^{325}=3^3\left(3^5\right)^{47}< 2^5\left(2^8\right)^{47}=2^{381}\)\(\left(4\right)\)

      Từ \(\left(1\right)\), \(\left(4\right)\) ta có:

      \(2^{2380}< 3^{238}.7^{714}\)

\(\Leftrightarrow2^{2380}< 2^{381}.7^{714}\)

\(\Leftrightarrow2^{1999}< 7^{714}\)

\(\Leftrightarrow2^{1993}< 7^{714}\).

15 tháng 4 2017

Ta có 7 mũ 714 > 2 mũ 1993

=> 2 mũ 1993 < 7 mũ 714

16 tháng 4 2017

212 = 1025 ; 73 = 343 \(\Rightarrow\) 210 < 3.73 \(\Rightarrow\)\(\left(2^{10}\right)^{238}< 3^{238}.\left(7^3\right)^{238}\)\(\Rightarrow\)22380 < 3238.7714 .

28 = 256 ; 34 = 243 => 35 < 2^8

Ta có : 3328 = 33.2225\(3^3.\left(3^5\right)^{47}< 3^3.\left(2^8\right)^{47}< 2^5.2^{376}\Rightarrow3^{328}< 2^{381}\)

22380 < 2238.7714 => 22380 < 2238.7714 => 21999 < 714 mà 21999 > 21993 => 21993 < 7714 .

4 tháng 12 2016

Đặt A=2+22+23+24+...+22016

  • A=(2+22)+(23+24)+...+(22015+22016)

A=2(1+3)+23(1+2)+...22015(1+2)

A=2.3+23.3+...+22015.3 

A=3.(2+23+...+22015)chia hết cho 3

A=(2+22+23)+(24+25+26)+...+(22014+22015+22016)

A=2(1+2+22)+24(1+2+22)+...+22014(1+2+22)

A=2.7+24.7+...+22014.7

A=7.(2+24+...+22016)chia hết cho 7

DD
23 tháng 11 2021

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+...+2^{57}\right)⋮5\)

\(A=2+2^2+2^3+2^4+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\).

hoàn đức hà là giáo viên trên olm phải ko?

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ