K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2015^{2016}-1=\left(2015-1\right)\cdot\left(2015^{2015}+2015^{2014}+...+1\right)\)

\(=2014\cdot\left(2015^{2015}+2015^{2014}+...+1\right)⋮2014\)

15 tháng 12 2017

Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :

- Tích các số lẻ có chứa các số 11 ; 17 ; 53

- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53

=> Tổng hai tích chia hết cho 9911.

22 tháng 12 2016

Giải:(bài này là đáp án đúng,cô giáo chữa rồi) đề thi HK1

Ta thấy 2015^2016 là một số lẻ suy ra 2015^2016-1 là một số chẵn và 2015^2016+1 cũng là số chẵn

suy ra 2015^2016-1 chia hết cho 2

2015^2016 +1 chia hết cho 2

Suy ra (2015^2016-1)(2016^2016+1) chia hết cho(2.2

Hay A chia hết cho 4

2 Xét 2 STN liên tiếp

(2015^2016-1),2015^2016,(2015^2106+1)

Trong ba số tự nhiên sẽ có một số chia hết cho 3

Ta thấy 2015 ko chia hết cho 3 suy ra 2015^2016 ko chia hết cho 3

Vậy 1 trong 2 số (2015^2016-1) ;(29015^2016+1) sẽ phải chia hết cho 2 suy ra A chia hết cho 3

mà (3,4) là cặp số nguyên tố cùng nhau nên A chia hết cho 3

MÌnh ở Huyện thuận thành xã hoài thượng hân hạnh làm quen

14 tháng 11 2017

4 đâu phải số nguyên tố số 12 cũng vậy

6 tháng 2 2017

mk nè,k đi

20 tháng 12 2016

Ai giải hộ mik bài này đi mình K cho

2 tháng 12 2018

ta có: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 4 nên A chia hết cho 4

mặt khác: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 12 nên A chia hết cho 12

3 tháng 12 2018

đúng rồi

14 tháng 12 2016

mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp

...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp

mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2

mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập

                             CHÚC MAY MẮN

5 tháng 2 2017

Tuy bài làm của bạn ko giống như bài của cô mình chữa nhưng mình cũng rất cảm ơn bạn nhé Nguyễn Lâm Văn

5 tháng 12 2019

gips mk với ai làm nhanh nhất mk sẽ k

18 tháng 6 2015

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

18 tháng 6 2015

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}

 

24 tháng 9 2016

a) Ta thấy: \(32^{2016}=32^{4.504}\) và 32 có chữ số tận cùng là 2

=> \(32^{2016}\) có chữ số tận cùng là 6

Lại có: \(12^{1080}=12^{4.270}\) và 12 có chữ số tận cùng là 2

=> \(12^{1080}\)có chữ số tận cùng là 6

Do đó: Chữ số tận cùng của \(32^{2016}-12^{2080}\) là    \(6-6=0\)

Vì vậy: \(32^{2016}-12^{1080}\) chia hết cho 10

b) Ta thấy: \(79^{2015}\) có 2015 là số lẻ và 79 có chữ số tận cùng là 9

=> Chữ số tận cùng của \(79^{2015}\) là 9

Lại có: \(81^{2014}\) có 81 có chữ số tận cùng là 1

=> \(81^{2014}\) có chữ số tận cùng là 1

Do đó: \(79^{2015}+81^{2014}\) có chữ số tận cùng là 0 vì 9+1=10

Vì vậy: \(79^{2015}+81^{2014}\) chia hết cho 10