Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :
- Tích các số lẻ có chứa các số 11 ; 17 ; 53
- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53
=> Tổng hai tích chia hết cho 9911.
Giải:(bài này là đáp án đúng,cô giáo chữa rồi) đề thi HK1
Ta thấy 2015^2016 là một số lẻ suy ra 2015^2016-1 là một số chẵn và 2015^2016+1 cũng là số chẵn
suy ra 2015^2016-1 chia hết cho 2
2015^2016 +1 chia hết cho 2
Suy ra (2015^2016-1)(2016^2016+1) chia hết cho(2.2
Hay A chia hết cho 4
2 Xét 2 STN liên tiếp
(2015^2016-1),2015^2016,(2015^2106+1)
Trong ba số tự nhiên sẽ có một số chia hết cho 3
Ta thấy 2015 ko chia hết cho 3 suy ra 2015^2016 ko chia hết cho 3
Vậy 1 trong 2 số (2015^2016-1) ;(29015^2016+1) sẽ phải chia hết cho 2 suy ra A chia hết cho 3
mà (3,4) là cặp số nguyên tố cùng nhau nên A chia hết cho 3
MÌnh ở Huyện thuận thành xã hoài thượng hân hạnh làm quen
ta có: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 4 nên A chia hết cho 4
mặt khác: 2015^2016+1chia hết cho 2015+1=2016, mà 2016 chia hết cho 12 nên A chia hết cho 12
mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp
...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp
mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2
mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập
CHÚC MAY MẮN
a)2014 + 2014^2 + 2014^3 + ... + 2014^10
=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)
=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)
=2014.2015+2014^3.2015+...+2014^9.2015
vì 2014.2015 chia hết cho 2015
2014^3.2015 chia hết cho 2015
.....
2014^9.2015 chia hết cho 2015
=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015
vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015
a,2014+20142+20143+....+201410
=(2014+20142)+(20143+20144)+.....+(20149+201410)
=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)
=2014.2015+20143.2015+..........+20149.2015
=2015.(2014+20143+...........+20149) \(^._:\)2015 (đpcm)
b,4n+1\(^._:\)n+1
4n+4 -3\(^._:\)n+1
Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1
=>n+1\(\in\){1; -1; 3; -3}
n+1 | n |
1 | 0 |
-1 | -2 |
3 | 2 |
-3 | -4 |
KL: n\(\in\){0; 2; -2; -4}
a) Ta thấy: \(32^{2016}=32^{4.504}\) và 32 có chữ số tận cùng là 2
=> \(32^{2016}\) có chữ số tận cùng là 6
Lại có: \(12^{1080}=12^{4.270}\) và 12 có chữ số tận cùng là 2
=> \(12^{1080}\)có chữ số tận cùng là 6
Do đó: Chữ số tận cùng của \(32^{2016}-12^{2080}\) là \(6-6=0\)
Vì vậy: \(32^{2016}-12^{1080}\) chia hết cho 10
b) Ta thấy: \(79^{2015}\) có 2015 là số lẻ và 79 có chữ số tận cùng là 9
=> Chữ số tận cùng của \(79^{2015}\) là 9
Lại có: \(81^{2014}\) có 81 có chữ số tận cùng là 1
=> \(81^{2014}\) có chữ số tận cùng là 1
Do đó: \(79^{2015}+81^{2014}\) có chữ số tận cùng là 0 vì 9+1=10
Vì vậy: \(79^{2015}+81^{2014}\) chia hết cho 10
\(2015^{2016}-1=\left(2015-1\right)\cdot\left(2015^{2015}+2015^{2014}+...+1\right)\)
\(=2014\cdot\left(2015^{2015}+2015^{2014}+...+1\right)⋮2014\)