Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d
=>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2
Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Gọi 2 số lẻ liên tiếp có dạng 2k+1 ; 2k+3 ( k thuộc N )
Gọi ƯCLN (2k+1;2k+3) = d
=> 2k+1 và 2k+3 đều chia hết cho d
=> 2k+3 - 2k - 1 chia hết cho d hay 2 chia hết cho d
Mà 2k+1 lẻ => d lẻ => d = 1
=> ƯCLN (2k+1;2k+3) = 1
=> 2k+1 và 2k+3 là 2 số nguyên tố cùng nhau
=> ĐPCM
k mk nha
a: Gọi a=UCLN(2k+1;2k+3)
\(\Leftrightarrow2k+3-2k-1⋮a\)
\(\Leftrightarrow2⋮a\)
mà 2k+1 là số lẻ
nên a=1
=>2k+1 và 2k+3 là hai số nguyên tố cùng nhau
b: Gọi a=UCLN(n+1;n+2)
\(\Leftrightarrow n+2-n-1⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1 và n+2 là hai số nguyên tố cùng nhau
Bạn xem lại đề nhé.
Hai số nguyên tố cùng nhau có ƯCLN là 1
Mà 2 số chẵn liên tiếp luôn cùng chia hết cho 2 > 1
=> 2 số chẵn liên tiếp không nguyên tố cùng nhau
2 số lẻ liên tiếp hơn kém nhau 2 đơn vị suy ra ưcln chỉ có thể là 2 mà 2 số lẻ ko chia hết cho 2 nên 2 số lẻ liên tiếp có ưcln là 19(dpcm)
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2
Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2
Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
Câu 1: 2n + 5 và 3n + 7
Gọi ước chung lớn nhất của 2n + 5 và 3n + 7 là d
Theo bài ra ta có:
\(\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\)
6n + 15 - 6n - 14 ⋮ d
1 ⋮ d
⇒ d = 1
Vậy ước chung lớn nhất của 2n + 5 và 3n + 7 là 1
Hay 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau (đpcm)
gọi 2.n +1 là một số lẻ bất kì (n thuộc N )
suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp
gọi d thuoocj vào ƯC(2n+1,2n+3 ) (d thuộc N*)
suy ra 2n+1 và 2n+3 chia hết cho d
suy ra [(2n+3) - (2n+1)] chia hết cho d
suy ra 2 chia hết cho d
suy ra d thuộc Ư(2) ={1;2}
suy ra d khác 2 (vì 2n+1 và 2n+3 là các số lẻ )
suy ra d =1
suy ra ƯC (2n+1 ,2n+3 ) =1
suy ra UWCLN (3n+1 , 2n+3) =1
suy ra 2n +1 và 2n+3 nguyên tố cùng nhau
vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau .
gọi là 2 số lẻ liên tiếp : 2n+1 ; 2n+3 ( n thuộc N)
gọi d là ƯC( 2n+1 ; 2n+3 ) ( d thuộc N*)
=> 2n+1 chia hết cho d ; 2n+3 chia hết cho d => 2 chia hết cho d
=> d thuộc Ư(2) ={ 1; 2}
Vì 2 là số chẵn khác d nên d =1
=> ĐPCM
gọi 2 số lẻ liên tiếp là n+1 và n+3
coi d là ước chung lớn nhất của n+1 và n+ 3 \(\left(d\in N^{ }\right)\)
ta có : n+ 1 chia hết cho d
n+3 chia hết cho d
suy ra n+3 - (n+1 )chia hết cho d
suy ra n+3-n-1 chia hết cho d
suy ra 2 chia hết cho d
vậy d thuộc ước của 2
vậy d = 1 hoặc d= 2
d ko thể bằng 2 vì n +1 là số lẻ ko chia hết cho 2
vậy d = 1
suy ra ước chung lớn nhất của 2 số lẻ liên tiếp là d
suy ra 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi 2 số lẻ liên tiếp đó là : 2n+1 và 2n+3
Gọi UCLN(2n+1,2n+3) là d
Ta có : 2n+1 chia hết cho d và 2n+3 chia hết cho d
=> 2n+3 - 2n+1 chia hết cho d
Hay : 2 chia hết cho d => d là 1 hoặc 2 mà 2n+1 và 2n+ 3 là số lẻ nên d ko thể =2. Vậy d =1
=> 2n+1 và 2n+3 là 2 số nguyên tố cùng nhau
Mình cảm ơn bạn Nguyễn Ngọc Thúy nhiều nha. Bạn giải đúng rùi mình sẽ nhớ công ơn của bạn mãi mãi. Mình sẽ kết bạn với bạn nha. Thank you