K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Giả sử có tồn tại 2 số ko dương thỏa mãn đề bài

Ta có :\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\Leftrightarrow\frac{y-x}{xy}=\frac{1}{x-y}\Leftrightarrow\frac{-\left(x-y\right)}{xy}=\frac{1}{x-y}\)

\(\Rightarrow-\left(x-y\right)^2=xy\)

Ta thấy \(-\left(x-y\right)^2\le0\forall x;y\) Mà x ;y cùng không dương hay x;y cùng dấu \(\Rightarrow xy>0\)

\(\Rightarrow-\left(x-y\right)^2\ne xy\) Hay (1) ko xảy ra

=> điều giả sử sai

Hay ko tồn tại 2 số ko dương thỏa mãn \(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\) (đpcm)

1 tháng 10 2017

Đánh dấu \(-\left(x-y\right)^2=xy\) là (1)

26 tháng 10 2020

Vì x,y,z là các số nguyên dương

nên áp dụng bất đẳng thức Cauchy ta có :

\(x+y\ge2\sqrt{xy}\)(1)

\(y+z\ge2\sqrt{yz}\)(2)

\(z+x\ge2\sqrt{zx}\)(3)

Nhân (1), (2) và (3) theo vế ta có :

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}=8\sqrt{xy\cdot yz\cdot zx}=8\sqrt{x^2y^2z^2}=8\left|xyz\right|=8xyz\)

( do x,y,z là các số nguyên dương )

Đẳng thức xảy ra <=> x = y = z

=> đpcm

3 tháng 6 2018

áp dụng BĐT AM-GM 

ta có \(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{zx}\)

=>\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z\left(ĐPCM\right)}\)

21 tháng 3 2016

x và y= 6 và 3

AH
Akai Haruma
Giáo viên
15 tháng 12 2022

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

NV
20 tháng 3 2023

Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)

\(\Rightarrow x^5< x^2\)

Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\)\(z< 1\Rightarrow z^7< z^2\)

\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)

\(\Rightarrow x^5+y^6+z^7< 1\)

9 tháng 2 2019

xin lối phần 2 sai rồi các bạn ko cần làm phần 2 nha <3    :>>