Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(6n+5) và ( 2n+1)
Gọi d là ƯC ( 6n+5) và (2n+1)
=> (6n+5) chia hết d và ( 2n+1) chia hết d
=> ( 6n+5) chia hết d và 3( 2n+1) chia hết d
=> [ ( 6n+5) - ( 6n + 3 ) ] chia hết d
=> 2 chia hết d
=> d = 1 hoặc 2
Vậy 6n+5 và 2n+1 nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1;6n+5)
=>2n+1 chia hết cho d và 6n+5 chia hết cho d
=>3(2n+1) chia hết cho d và 6n+5 chia hết cho d
=>6n+3 chia hết cho d và 6n+5 chia hết cho d
=>(6n+5)-(6n+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2n+1;6n+5) thuộc 1 hoặc 2
Nhưng loại 2 vì 2 số 2n+1 và 6n+5 là số lẻ nên không có ƯCLN là số chẳn => ƯCLN(2n+1;6n+5)=1 nên 2 số này là 2 số nguyên tố cùng nhau.
Gọi (2n + 1,6n + 5) = d (d \(\in\)N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Ủng hộ mk nha !!! ^_^
Gọi d là Ưcln của 2n + 1 và 6n + 5
Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d
Mà ưc của 2 là 1 => d = 1
VậY (đpcm_)
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
dk kái đó gọi là chứng minh phản chứng