Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 10n chia cho 45 dư 10 => 10n - 10 sẽ chia hết cho 45
vậy 10n - 10 chắc chắn chia hết cho 9 và 5 ( ta cm điều đó )
ta có 10n - 10 = 100000....n số o - 10 = 999999........( n - 1 số 9 ) 0
hay :( n - 1 số 9 ) x 10
xét thấy n - 1 số 9 chia hết ho 9 và 10 chia hết cho 5 => 10nn - 10 chia hết cho 45
nên 10n chia cho 45 sẽ dư 10 ( đpcm )
giả sữ 10^n chia hết cho45 dư 10 su ra 10^n-10 chia hết cho 45
Vậy 10^n-n cũng sẽ chia hết cho 9 và 5
ta có: 10^n-10=100000000000.....n ( n số 0)-10=999999999999...........(n-1 số 9)0
xét thấy n-1 số 9 chia hết cho 9 và 10 chia hết cho 5 suy ra 10^n-10 chia hết cho 45
nên 10^n chia hết cho 45 dư 10
tick cho mk nnnnnnnnnnnnhhhhhhhhhhhhhhhhhhhhhaaaaaaaaaaaaaaaa!!!!!!!!!!!!!!!!!!!!!!!1
Gỉa sử 10n chia hết cho 45 dư 10 => 10n - 10 sẽ chia hết cho 45
Vậy 10n - 10 chắc chắn sẽ chai hết cho 9 và 5
Ta có : 10n - 10 = 10000....n số 0 - 10 = 9999......( n-1 số 9 )
hay : ( n-1 số 9 ) x 10
Xét thấy : n - 1 số 9 chia hết cho 9 và 10 chia hết cho 5 => 10n - 10 chia hết cho 45
nên 10n chia cho 45 luôn dư 10
a/ \(10^n+2^3=1000...08\) (n-1 chữ số 0)
Tổng các chữ số của \(10^n+2^3\) là \(1+8=9⋮9\Rightarrow10^n+2^3⋮9\)
b/ \(10^n+26=1000...026\) (n-2 chữ số 0)
\(1000...026⋮2\Rightarrow10^n+26⋮2\)
Tổng các chữ số của \(10^n+26\) là \(1+2+6=9⋮9\Rightarrow10^n+26⋮9\)
Mà 2 và 9 là 2 số nguyên tố cùng nhau
\(\Rightarrow10^n+26⋮2.9=18\)
c/
\(9^{2n+1}=9.9^{2n}\)
\(9^{2n}=\left(9^2\right)^n=81^n\) có chữ số hàng đơn vị là 1
\(\Rightarrow9^{2n+1}=9.9^{2n}\) có chữ số hàng đơn vị là 9
\(\Rightarrow9^{2n+1}+1\) có chữ số hàng đơn vị là 0 \(\Rightarrow9^{2n+1}+1⋮10\)
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
+) Nếu n > 1 . Ta xét 10n - 10 = 10(10n - 1 - 1) = 10.(99....9) (n - 1 số 9)
+) Với n = 1 thì 10n = 10 . ta có 10 chia 45 dư 10
Vậy ...
\(10^n : 45(10) \)
=> \(10^n = 1000..000...\)
=> \(1000...000... : 45 = ...(10)\)
=> \(10^n : 45 = ...(10)\)