K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

a) \(a^3+b^3=\left(a^3+b^3+3a^2b+3ab^2\right)-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)=> điều phải c/m

b) \(a^3-b^3=\left(a^3-b^3-3a^2b+3ab^2\right)+3a^2b-3ab^2=\left(a-b\right)^3+3ab\left(a-b\right)\)=> đpcm

c) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=-5^3-3.6.\left(-5\right)=-35\)

 

chứng mih rằng

a)  a^3 + b^3= (a+b)^3 - 3ab (a+b)

b) a^3 - b^3= (a-b)^3 +3ab (a-b)

áp dụng: tính a^3 +b^3, biết a.b= 6 ; a+b = -5

Được cập nhật {timing(2017-08-24 22:01:41)}

Toán lớp 8 Hằng đẳng thức

Nguyễn Thị BÍch Hậu 17/06/2015 lúc 13:34
Thống kê hỏi đáp
 Báo cáo sai phạm

a) a3+b3=(a3+b3+3a2b+3ab2)−3a2b−3ab2=(a+b)3−3ab(a+b)=> điều phải c/m

b) a3−b3=(a3−b3−3a2b+3ab2)+3a2b−3ab2=(a−b)3+3ab(a−b)=> đpcm

c) a3+b3=(a+b)3−3ab(a+b)=−53−3.6.(−5)=−35

 Đúng 5 Học toán ngu ngu ấy mà đã chọn câu trả lời này.

16 tháng 9 2016

a)

a) a3 + b3 

= (a + b)(a2 - ab + b2)

= (a + b)(a2 + 2ab + b2 - 3ab) 
= (a + b)[(a + b)2 - 3ab] = (a + b)3 - 3ab(a + b) 

b)

(a - b)3 + 3ab(a - b)

= a3 - 3a2.b + 3.ab2 - b3+ 3a2b - 3ab2

 = a3- b3

áp dụng

\(a^3+b^3\) 

\(=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(-5\right)^3-3.6.\left(-5\right)\)

\(=-125+90\)

\(=-35\)

 

 

 

 

16 tháng 9 2016

cảm ơn bạn nha

20 tháng 4 2017

a) a3 + b3 = (a + b)3 – 3ab(a + b)

Thực hiện vế phải:

(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

Thực hiện vế phải:

(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.



27 tháng 6 2017

a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)

=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.


19 tháng 7 2016

Xét VP : \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)

vậy VT=VP

=> \(a^3+b^3=\left(-5\right)^3-30.\left(-5\right)=25\)

19 tháng 7 2016

Xét VP: \(\left(a-b\right)^3+3ab\left(a-b\right)=a^3-3a^2b+3ab^2-b^2+3a^2b-3ab^2=a^3-b^3\)

=> VT=VP

2 tháng 10 2017

C/M:

a)a^3+b^3=(a+b)^3-3a*b*(a+b)

VP=a^3+3*a^2*b+3*a*b^2+b^3-3*a^2*b-3*a*b^2

=a^3+b^3

Thay:a*b=6 và a+b=-5

Ta có:a^3+b^3=(a+b)*(a^2*a*b*b^2) =-5*(a^2*6*b^2)

Mà:a*b=6 nên a2*b2=62=36

Suy ra: =-5*(36*6)=-1080

Tương tự như câu a) làm câu b).Chúc bạn làm được câu b)thanghoa.

2 tháng 10 2017

Mình không biết làm đúng hay sai nhan.Nhưng bạn cứ chép đáp án vào.hehe

3 tháng 9 2018

giải

a) Ta có:

VP=(a+b)3−3ab(a+b)

=a3+3a2b+3ab2+b3−3a2b−3ab2

=a3+b3=VT (đpcm)

b) Ta có:

VP=(a−b)3+3ab(a−b)

=a3−3a2b+3ab2−b3+3a2b−3ab2

=a3−b3=VT (đpcm)

Áp dụng:

Với ab=12a+b=−7 ta có:

a3+b3=(a+b)3−3ab(a+b)

=(−7)3−3.12.(−7)=−91

a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2\)

\(=a^3+b^3\)

b: \(\left(a-b\right)^3+3ab\left(a-b\right)\)

\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

\(=a^3-b^3\)

16 tháng 6 2017

a) a3 + b3 = (a + b)3 - 3ab(a + b)

Ta có:\(VP=\) \(a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

= \(a^3+b^3\)\(=VT\)

Vậy a3 + b3 = (a + b)3 - 3ab(a + b)

b) a3 - b3 = (a - b)3 - 3ab(a - b)

Ta có: VP =\(a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)

= \(a^3-b^3=VT\)

Vậy a3 - b3 = (a - b)3 - 3ab(a - b)

10 tháng 6 2017

Câu hỏi của Nguyễn Thu Hằng - Toán lớp 8 | Học trực tuyến

16 tháng 7 2015

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)

=> ĐPCM 

b; tương tự

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

= -5^3 - 3.6.-5 = -125 + 90 = - 35