K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

Thay x = 4 vào phương trình ta có:

Từ đó tìm được 

21 tháng 3 2022

a) m2+1\(\ge\)1 \(\forall\)m, suy ra phương trình đã cho là phương trình bậc nhất một ẩn với mọi m.

b) Nghiệm của phương trình đã cho là x=\(\dfrac{2m}{m^2+1}\) (*).

Áp dụng BĐT Co-si cho hai số dương m2 và 1, ta có:

m2+1\(\ge\)2\(\sqrt{m^2.1}\)=2|m|.

Dấu "=" xảy ra khi và chỉ khi m2=1 \(\Rightarrow\) m=\(\pm\)1.

Với m=1, x=1.

Với m=-1, x=-1.

So sánh hai giá trị của x, ta kết luận: giá trị m cần tìm là m=1.

22 tháng 3 2022

e cảm ơn ạ hehe

4 tháng 3 2022

mày lớp mấy

4 tháng 3 2022

\(a)\) \(Thay\) \(x=2\) \(\text{ vào }\)\(PT:\)

\(2m-3=2m-2-1.\\ \Leftrightarrow2m-3-2m+2+1=0.\)

\(\Leftrightarrow0=0\) (luôn đúng).

\(\Rightarrow\) PT luôn nhận x = 2 làm nghiệm với mọi giá trị của m.

5 tháng 1 2018

Thay m = - 4 vào vế trái phương trình:

- 4 2 + 5 - 4 + 4 x 2 = 0 x 2

Vế phải phương trình : - 4 + 4 = 0

Phương trình đã cho trở thành:

0 x 2 = 0 nghiệm đúng với mọi giả trị của x ∈ R.

24 tháng 1 2021

a. m2 ≥ 0 ∀ m 

=>  m2 +1> 0 ∀ m 

b. m2 +2m +3 = m2 + 2m +1 +2 = (m + 1)2 + 2 > 0 ∀ m 

c. m2 ≥ 0 ∀ m

=>  m2 +2> 0 ∀ m 

d.   m2 - 2m +2 =  m2 -2m + 1 +1 =  (m - 1)2 + 1 > 0 ∀ m 

 

a) Để phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn thì \(m^2+1\ne0\)

\(\Leftrightarrow m^2\ne-1\)

mà \(m^2\ge0\forall m\)

nên \(m^2\ne-1\forall m\)

\(\Leftrightarrow m^2+1\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+1\right)x-3=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m

b) Để phương trình \(\left(m^2+2m+3\right)x+m-1=0\) là phương trình bậc nhất một ẩn thì \(m^2+2m+3\ne0\)

\(\Leftrightarrow\left(m+1\right)^2+2\ne0\)

mà \(\left(m+1\right)^2+2\ge2>0\forall m\)

nên \(\left(m+1\right)^2+2\ne0\forall m\)

hay \(m^2+2m+3\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+2m+3\right)x+m-1=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m

c) Để phương trình \(\left(m^2+2\right)x-4=0\) là phương trình bậc nhất một ẩn thì \(m^2+2\ne0\)

\(\Leftrightarrow m^2\ne-2\)

mà \(m^2\ge0\forall m\)

nên \(m^2\ne-2\forall m\)

\(\Leftrightarrow m^2+2\ne0\forall m\)

Vậy: Phương trình \(\left(m^2+2\right)x+4=0\) là phương trình bậc nhất một ẩn với mọi giá trị của tham số m

d) Để phương trình \(\left(m^2-2m+2\right)x+m=0\) là phương trình bậc nhất một ẩn thì \(m^2-2m+2\ne0\)

\(\Leftrightarrow\left(m-1\right)^2+1\ne0\)

mà \(\left(m-1\right)^2+1\ge1>0\forall m\)

nên \(\left(m-1\right)^2+1\ne0\forall m\)

hay \(m^2-2m+2\ne0\forall m\)

Vậy: Phương trình \(\left(m^2-2m+2\right)x+m=0\) luôn là phương trình bậc nhất một ẩn với mọi tham số m