Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
A = a( b + 2 ) + b( 2 + b )
= a( b + 2 ) + b( b + 2 )
= ( a + b )( b + 2 )
Với a = 2 ; b = 3
A = ( 2 + 3 )( 3 + 2 ) = 5.5 = 25
B = b2 + b + c( b + 1 )
= b( b + 1 ) + c( b + 1 )
= ( b + c )( b + 1 )
Với b = 1 ; c = 2
B = ( 1 + 2 )( 1 + 1 ) = 6
C = xy( x - y ) - 2x + 2y
= xy( x - y ) - 2( x - y )
= ( x - y )( xy - 2 )
Với xy = 8 ; x - y = 5
C = 5.( 8 - 2 ) = 30
D = x( x + y ) - xy( x + y )
= ( x + y )( x - xy )
= ( x + y )x( 1 - y )
Với x = 1 ; y = -5
D = ( 1 - 5 ).1.[ 1 - ( -5 ) ] = -24
a)\(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-b+c\right)}=\dfrac{a+b-c}{a-b+c}\)Giá trị của biểu thức trên tại \(a=4;b=-5;c=6\) là:
\(\dfrac{4-5-6}{4-\left(-5\right)+6}=-\dfrac{7}{15}\)
b: \(=\dfrac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\dfrac{2x-5y}{x-3y}\)
Đặt x/10=y/3=k
=>x=10k; y=3k
\(A=\dfrac{2\cdot10k-5\cdot3k}{10k-3\cdot3k}=\dfrac{5k}{k}=5\)
c: \(C=\left(\dfrac{x^3-y^3-x^3-y^3}{\left(x+y\right)\left(x-y\right)}\right):\dfrac{x^2-y^2-x^2}{x+y}\)
\(=\dfrac{-2y^3}{\left(x+y\right)\left(x-y\right)}\cdot\dfrac{x+y}{-y^2}=\dfrac{2y}{x-y}\)
\(=\dfrac{20}{9-10}=-20\)