Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 vào (P), ta được:
y=1^2=1
Thay x=1 và y=1 vào (d), ta được:
m+n=1
=>m=1-n
PTHĐGĐ là:
x^2-mx-n=0
=>x^2-x(1-n)-n=0
=>x^2+x(n-1)-n=0
Δ=(n-1)^2-4*(-n)
=n^2-2n+1+4n=(n+1)^2>=0
Để (P) tiếp xúc (d) thì n+1=0
=>n=-1
b: n=-1 nên (d): y=2x-1
(d1)//(d) nên (d1): y=2x+b
Thay x=2 vào y=x^2, ta được:
y=2^2=4
PTHĐGĐ là:
x^2-2x-b=0
Δ=(-2)^2-4*1*(-b)=4b+4
Để (d1) cắt (P) tại 2 điểm pb thì 4b+4>0
=>b>-1
Bài 1:
Gọi giao điểm của 2 đths là \(I(x_I,y_I)\)
a)
Giao điểm nằm trên trục tung thì \(x_I=0\)
Ta có: \(I\in (d);(d')\Rightarrow \left\{\begin{matrix} y_I=m.0-4=-4\\ y_I=0+m=m\end{matrix}\right.\)
\(\Rightarrow m=-4\)
b) Giao điểm nằm trên trục hoành thì \(y_I=0\)
Ta có: \(I\in (d);(d')\Rightarrow \left\{\begin{matrix} 0=mx_I-4\\ 0=x_I+m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} mx_I=4\\ x_I=-m\end{matrix}\right.\)
\(\Rightarrow -m^2=4\) (VL)
Vậy k tồn tại $m$ để hai đths cắt nhau tại một điểm trên trục hoành.
c)
Hai đths cắt nhau tại điểm có tung độ bằng $1$
\(\Leftrightarrow \left\{\begin{matrix} mx_I-4=1\\ x_I+m=1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} mx_I=5\\ x_I=1-m\end{matrix}\right.\)
\(\Rightarrow m(1-m)=5\)
\(\Leftrightarrow (m-\frac{1}{2})^2+\frac{19}{4}=0\) (VL)
Vậy k tồn tại $m$ để 2 đths cắt nhau tại điểm có tung độ bằng $1$
Bài 2:
\(y=(m+1)x-m-3, \forall m\)
\(\Leftrightarrow m(x-1)+x-3-y=0, \forall m\)
Để điều này xảy ra thì \(\left\{\begin{matrix} x-1=0\\ x-3-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=-2\end{matrix}\right.\)
Như vậy $(d)$ luôn đi qua điểm \((1,-2)\) với mọi $m$
b) ĐK: \(m\neq -1\)
\(A=(d)\cap Ox\Rightarrow \left\{\begin{matrix} y_A=0\\ y_A=(m+1)x_A-m-3\end{matrix}\right. \)
\(\Rightarrow \left\{\begin{matrix} y_A=0\\ x_A=\frac{m+3}{m+1}\end{matrix}\right.\)
\(B=(d)\cap Oy\Rightarrow \left\{\begin{matrix} x_B=0\\ y_B=(m+1)x_B-m-3\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x_B=0\\ y_B=-m-3\end{matrix}\right.\)
Vì $A,B$ nằm trên trục hoành và trục tung nên hiển nhiên tam giác $OAB$ vuông sẵn. Vậy để nó là tam giác vuông cân thì $OA=OB$
\(\Leftrightarrow \sqrt{(\frac{m+3}{m+1})^2}=\sqrt{(-m-3)^2}\)
\(\Leftrightarrow (\frac{m+3}{m+1})^2=(m+3)^2\)
\(\Leftrightarrow (m+3)^2\left(\frac{1}{(m+1)^2}-1\right)=0\)
\(\Rightarrow \left[\begin{matrix} m=-3\\ m=-2\\ m=0\end{matrix}\right.\)
Với $m=-3$ thì $A,B$ trùng nhau nên $m=0,-2$
xét pt hoành độ giao điểm của (P) và (d) có:
\(mx^2=2x+1\Leftrightarrow mx^2-2x-1=0\)(1)
\(\Delta'=1+m\)
a/(P) và (d) k giao nhau=> \(\Delta'< 0\Rightarrow1+m< 0\Rightarrow m< -1\)
b/(P) vfa (d) cắt nhau tài 2 điểm phân biệt=>\(\Delta'>0\Rightarrow m>-1\)
c/(p) fa (d) tiếp xúc với nhau =>\(\Delta'=0\Rightarrow m=-1\)
thay m=-1 vào (1) ta có: (1)\(\Leftrightarrow-x^2-2x-1=0\Leftrightarrow-\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\) thay vào (d) ta có:y=-1
điểm(-1;-1) là tiếp điểm của d và P
1) ĐK \(\hept{\begin{cases}x\ne y\\y\ge-1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x-y}=a\left(a\ne0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\)hệ phương trình đã cho trở thành
\(\hept{\begin{cases}2a+b=4\\a-3b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+b=4\\2a-6b=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=14\\2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{x-y}=1\\\sqrt{y+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=1\\y+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\left(tm\right)\)
Vậy ...
1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)
Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành
\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)
Vậy ...
1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\) ĐKXĐ:x≥o,y≠1
⇔\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)
vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)
2,a, xét pthđgđ của (d) và (p) khi m=3:
x\(^2\)=3x-1⇔\(x^2-3x+1=0\)
Δ=(-3)\(^2\)-4.1.1=5>0
⇒pt có 2 nghiệm pb
\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)
thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:
y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))
thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:
y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))
vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))
b,xét pthđgđ của (d) và (p) :
\(x^2=mx-1\)⇔\(x^2-mx+1=0\) (*)
Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4
⇒pt có hai nghiệm pb⇔Δ>0
⇔m\(^2\)-4>0⇔m>16
với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)
theo hệ thức Vi-ét ta có:
(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)
\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3
⇒\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)
thay (I) vào (**) ta được:
1.m=3⇔m=3 (TM m≠0)
vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3
Đường thẳng d: y = mx + n và parabol (P): y = a x 2 cắt nhau tại hai điểm phân biệt khi phương trình a x 2 = m . x + n có hai nghiệm phân biệt.
Đáp án: A