K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)

\(\Leftrightarrow-n^3+n⋮n^3+1\)

\(\Leftrightarrow n=1\)

1 tháng 9 2021

\(\sqrt{21-12\sqrt{3}}=\sqrt{21-2.\sqrt{36}.\sqrt{3}}=\sqrt{21-2\sqrt{108}}=\sqrt{12-2.\sqrt{12}.\sqrt{9}+9}=\sqrt{\left(\sqrt{12}-3\right)^2}=\sqrt{12}-3\)

\(\sqrt{21-12\sqrt{3}}=2\sqrt{3}-3\)

28 tháng 10 2021

\(2,\Leftrightarrow\left\{{}\begin{matrix}20x+25y-10xy=0\\20x-30y+xy=0\end{matrix}\right.\Leftrightarrow55y-11xy=0\\ \Leftrightarrow11y\left(5-x\right)=0\Leftrightarrow\left[{}\begin{matrix}y=0\\x=5\end{matrix}\right.\)

Với \(y=0\Leftrightarrow4x+0=0\Leftrightarrow x=0\)

Với \(x=5\Leftrightarrow20+5y=10y\Leftrightarrow y=4\)

Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(5;4\right)\right\}\)

28 tháng 5 2021

a) Có \(\widehat{OAM}=90^0\) => Tam giác \(OAM\) nội tiếp đường tròn đường kính OM 

=> O,A,M cùng thuộc đường tròn đường kính OM (*)

Có \(\widehat{OBM}=90^0\) => Tam giác \(OBM\) nội tiếp đường tròn đường kính OM 

=> O,B,M cùng thuộc đường tròn đường kính OM (2*)

Do N là trung điểm của PQ => \(ON\perp PQ\)( Vì trong một đt, đường kính đi qua trung điểm của một dây ko đi qua tâm thì vuông góc với dây ấy)

=> \(\widehat{ONM}=90^0\) => Tam giác \(ONM\) nội tiếp đường tròn đường kính OM 

=> O,N,M cùng thuộc đt đường kính OM (3*)

Từ (*) (2*) (3*) => O,M,N,A,B cùng thuộc đt đk OM hay đt bán kính \(\dfrac{OM}{2}\)

b) Có AM//PS (cùng vuông góc với OA)

Gọi E là gđ của PS với (O) => \(sđ\stackrel\frown{AE}=sđ\stackrel\frown{AP}\)

Có \(\widehat{PRB}=\dfrac{1}{2}\left(sđ\stackrel\frown{AE}+sđ\stackrel\frown{PB}\right)\)\(=\dfrac{1}{2}\left(sđ\stackrel\frown{AP}+sđ\stackrel\frown{PB}\right)=\dfrac{1}{2}sđ\stackrel\frown{AB}\)

=> \(\widehat{PRB}=\widehat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\)

Có BNAM nội tiếp => \(\widehat{MAB}=\widehat{MNB}\)

\(\Rightarrow\widehat{PRB}=\widehat{MNP}\) => PRNB nội tiếp

\(\Rightarrow\widehat{BRN}=\widehat{BPN}\) mà \(\widehat{BPN}=\widehat{BAQ}=\dfrac{1}{2}sđ\stackrel\frown{BQ}\)

\(\Rightarrow\widehat{BRN}=\widehat{BAQ}\) => RN//AQ hay RN // SQ mà N la trung điểm của PQ

=> RN là đường TB của tam giác PSQ

=> R là trung điểm của PS <=> PR=RS

a: \(=2\sqrt{3}-\sqrt{5}-2\sqrt{5}-2\sqrt{3}+3\left(\sqrt{5}-1\right)\)

\(=-3\sqrt{5}+3\sqrt{5}-3\)

=-3

29 tháng 1 2019

câu 1 thiếu đề nha bạn

30 tháng 1 2019

Ukm trua hom nay to giup

5 tháng 10 2017

                                 Giải : 

Ta có hình vẽ :

A B C H D E

a ) Ta có :

+ ) \(AH^2=BH.CH=9.16=144cm^2\)

\(\Rightarrow AH=12cm\)

+ ) \(AB^2=BH.BC=9.25=225cm^2\)

\(\Rightarrow AB=15cm\)

+ ) \(AC^2=CH.BC=16.25=400cm^2\)

\(\Rightarrow AC=20cm\)

b ) Chứng minh được tứ giác ADHE là hình chữ nhật

c  ) Ta có :

+ ) \(HD.AB=HA.HB\)

\(\Rightarrow HD=\frac{HA.HB}{AB}=\frac{12.9}{15}=7,2cm\)

+ ) \(HE.AC=HA.HC\)

\(\Rightarrow HE=\frac{HA.HC}{AC}=\frac{12.16}{20}=9,6cm\)

\(\Rightarrow P\left(ADHE\right)=\left(7,2+9,6\right).2=33,6\left(cm\right)\)

\(\Rightarrow S\left(ADHE\right)=7,2\times9,6=69,12\left(cm^2\right)\)