Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
\(\Rightarrow\frac{2a}{2c}=\frac{7b}{7d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a+7b}{2c+7d}\) (1).
\(\frac{2a}{2c}=\frac{7b}{7d}=\frac{2a-7b}{2c-7d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a+7b}{2c+7d}=\frac{2a-7b}{2c-7d}.\)
\(\Rightarrow\frac{2a+7b}{2a-7b}=\frac{2c+7d}{2c-7d}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{4a}{4c}=\frac{2b}{2d}=\frac{4a-2b}{4c-2d}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{5a+2b}{5c+2d}\)
Suy ra \(\frac{4a-2b}{4c-2d}=\frac{5a+2b}{5c+2d}\)Suy ra điều phải chứng minh: \(\frac{4a-2b}{5a+2b}=\frac{4c-2d}{5c+2d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{3a^2}{3c^2}=\frac{5b^2}{5d^2}=\frac{2a^2}{2c^2}=\frac{7ab}{7cd}\)
\(=\frac{3a^2+5b^2}{3c^2+5d^2}=\frac{2a^2+7ab}{2c^2+7cd}\) ( tích chất dãy tỉ số bằng nhau )
\(\frac{a}{b}\)= \(\frac{c}{d}\)=> \(\frac{a}{c}\)= \(\frac{b}{d}\)= \(\frac{4a}{4c}\)= \(\frac{6b}{6d}\)= \(\frac{4a+6b}{4c+6d}\)
\(\frac{a}{c}\)= \(\frac{b}{d}\)= \(\frac{5a}{5c}\)= \(\frac{7b}{7d}\)= \(\frac{5a-7b}{5c-7d}\)
=> \(\frac{4a+6b}{4c+6d}\)= \(\frac{5a-7b}{5c-7d}\)
=> \(\frac{4a+6b}{5a-7b}\)= \(\frac{4c+6d}{5c-7d}\)
a) Mk sửa lại chỗ \(\frac{5a-7b}{5a-7d}\) nhé, đề đúng phải là \(\frac{5a-7b}{5c-7d}\)
Ta có: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{7b}{7d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{5a}{5c}=\frac{7b}{7d}=\frac{5a+7b}{5c+7d}=\frac{5a-7b}{5c-7d}\left(đpcm\right)\)
b) Ta có: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
b) Đặt \(\hept{\begin{cases}\frac{a}{b}=k\Rightarrow a=kb\\\frac{c}{d}=k\Rightarrow c=kd\end{cases}}\)
VT : \(\frac{5a+3b}{5a-3b}\Rightarrow\frac{5kb+3b}{5ka-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (1)
VP : \(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\) (2)
Từ (1) và (2) => đpcm