K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

a/c = c/b => ab = c^2

\(\frac{a^2+c^2}{b^2+c^2}=\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

12 tháng 11 2017

xin lỗi mọi người mk ghi sai đề

\(\frac{a}{c}\)\(=\)\(\frac{c}{b}\)

ai k cho mk không

chúc mọi người học tốt

12 tháng 11 2017

\(\frac{a}{b}\)=\(\frac{c}{d}\)=k \(\Rightarrow\)a=bk ;c=dk

\(\Rightarrow\)\(\frac{a}{a-c}\)=\(\frac{bk}{bk-b}\)=\(\frac{bk}{b\left(k-1\right)}\)=\(\frac{k}{k-1}\)(1)

\(\frac{c}{c-d}\)=\(\frac{dk}{dk-d}\)=\(\frac{dk}{d\left(k-1\right)}\)=\(\frac{k}{k-1}\) (2)

Từ (1) và (2) \(\frac{a}{a-b}\)=\(\frac{c}{c-d}\) (đpcm)

12 tháng 11 2017

a/b=c/d => b/a=d/c=>1-b/a=1-d/c=a-b/a=c-d/c đạo ngược lại ta có a/a-b=c/c-d

30 tháng 6 2018

\(\frac{a^2\cdot c^2}{c^2\cdot b^2}=\frac{a}{b}\)

Ta thấy trong phân số thứ nhất thì cả tử và mẫu đều có c2 nên ta lược bỏ thì sẽ được :

\(\frac{a^2}{b^2}=\frac{a}{b}\)( cái này hợp lí )

Cho nên ..................= ............

Tk mh nhé bn , mơn nhìu !!!!

~ HOK TỐT ~

19 tháng 12 2018

áp dụng t/c DTSBN,ta có:

\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)

\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)

\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)

từ (!) và (@) => đpcm

8 tháng 7 2019

#)Giải : (Bài này ez mak :v)

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

\(\Rightarrow\left(a+2\right)\left(b-3\right)=\left(a-2\right)\left(b+3\right)\)(bước này mk làm tắt đi nhé)

\(\Rightarrow3a=2b\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\)

\(\Rightarrowđpcm\)

8 tháng 7 2019

Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

=> \(\frac{\left(a-2\right)+4}{a-2}=\frac{\left(b-3\right)+6}{b-3}\)

=> \(1+\frac{4}{a-2}=1+\frac{6}{b-3}\)

=> \(\frac{4}{a-2}=\frac{6}{b-3}\)

=> \(4\left(b-3\right)=6\left(a-2\right)\)

=> \(4b-12=6a-12\)

=> \(4b=6a\)

=> \(2b=3a\)

=> \(\frac{b}{3}=\frac{a}{2}\)

6 tháng 11 2017

a) a/b=ad/bd

c/d=cb/db

mà a/b<c/d=>ad/bd<cb/bd=>ad<bc

b)ad<bc=>ad/bd<bc/bd=> a/b<c/d

3 tháng 12 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\). Ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{b^3\left(k-1\right)^3}{d^3\left(k-1\right)^3}=\frac{b^3}{d^3}\)

\(\frac{3a^2+2b^2}{3c^2+2d^2}=\frac{3\left(bk\right)^2+2b^2}{3\left(dk\right)^2+2d^2}=\frac{3b^2k^2+2b^2}{3d^2k^2+2d^2}=\frac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\frac{b^2}{d^2}\)

Đến đây nhìn có vẻ đề sai

3 tháng 12 2018

\(\frac{a}{b}=\frac{c}{d}=k\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{\left[b\left(k-1\right)\right]^3}{\left[d\left(k-1\right)\right]^3}=\frac{b^3}{d^3}\)

\(\frac{2b^2+3a^2}{2d^2+3c^2}=\frac{4.b^2+9.k^2.b^2}{4.d^2+9.d^2.k^2}=\frac{b^2\left(4+k^2.9\right)}{d^2\left(4+9.k^2\right)}=\frac{b^2}{d^2}\)

\(Taco:\frac{b^3}{d^3}=\frac{b^2}{d^2}\Leftrightarrow b=d\)