Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔBDC= ΔFCD(chứng minh trên)
Suy ra: ∠(C1 ) =∠(D1 ) (hai góc tương ứng)
Suy ra: DE // BC ( vì có hai góc so le trong bằng nhau)
ΔBDC= ΔFCD suy ra BC = DF (hai cạnh tương ứng)
Mà DE = 1/2 DF(gt). Vậy DE = 1/2 BC
Xét tam giác ABC có:
D là TĐ của AB (gt)
E là TĐ của AC (gt)
=> DE là đường trung bình của tam giác ABC(định nghĩa đường trung bình của tam giác)
=> DE // BC (Tc đường trung bình trong tam giác)
Xét ΔABC có
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay DE//BC(Định lí 2 về đường trung bình của tam giác)
Tớ bik làm nè
thề luôn nhưng tick tớ 5 cái đã rồi tớ làm cho
a: Xét ΔAED và ΔCEF có
EA=EC
\(\widehat{AED}=\widehat{CEF}\)
ED=EF
Do đó: ΔAED=ΔCEF
b: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE//BC và DE=1/2BC
b) Theo câu a) ta có \(\Delta ADE=\Delta CFE.\)
Hay \(BD\) // \(CF.\)
Xét 2 \(\Delta\) \(BDC\) và \(FCD\) có:
\(BD=FC\left(cmt\right)\)
\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)
Cạnh DC chung
=> \(\Delta BDC=\Delta FCD\left(c-g-c\right).\)
c) Theo câu b) ta có \(\Delta BDC=\Delta FCD.\)
Hay \(DE\) // \(BC.\)
+ Vì \(\Delta BDC=\Delta FCD\left(cmt\right)\)
=> \(BC=DF\) (2 cạnh tương ứng).
+ Vì \(E\) là trung điểm của \(DF\left(gt\right)\)
=> \(DE=\frac{1}{2}DF\) (tính chất trung điểm).
Mà \(BC=DF\left(cmt\right)\)
=> \(DE=\frac{1}{2}BC\left(đpcm\right).\)
Chúc bạn học tốt!
hình, bn tự vẽ nhé!
Giải:
a/ Xét t/g ADE và t/g CFE có:
AE = CE (gt)
\(\widehat{AED}=\widehat{CEF}\) (ddoois ddinhr)
DE = FE (gt)
=> t/g ADE = t/g CFE (c.g.c)
=> AD = CF
mà DB = AD (gt)
=> DB = CF (đpcm)
b/ Ta có: t/g ADE = t/g CFE (ý a)
=> \(\widehat{DAE}=\widehat{FCE}\) (2 góc tương ứng)
mà 2 góc này so le trong
=> AB // CF
=> \(\widehat{BDC}=\widehat{FCD}\) (so le trong)
\(\widehat{BCD}=\widehat{FDC}\) (so le trong)
Xét t/g BDC và t/g FCD có:
\(\widehat{BDC}=\widehat{FCD}\left(cmt\right)\)
CD : cạnh chung
\(\widehat{BCD}=\widehat{FDC}\left(cmt\right)\)
=> t/g BDC = t/g FCD (g.c.g)(đpcm)
c/ Ta có: \(\widehat{BCD}=\widehat{FDC}\) (đã cm)
mà 2 góc này ở vị trí so le trong
=> DE // BC (đpcm)
Vì t/g BDC = t/g FCD (ý b)
=> BC = FD
mà DE = EF = \(\frac{1}{2}\) FD
=> DE = EF = \(\frac{1}{2}BC\)
=> DE = \(\frac{1}{2}BC\left(đpcm\right)\)
Xét tam giác AED và tam giác CEF có:
AE = CE (E là trung điểm của AC)
AED = CEF (2 góc đối đỉnh)
ED = EF (E là trung điểm của DF)
=> Tam giác AED = Tam giác CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF
ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF
Xét tam giác BDC và tam giác FCD có:
BD = FC (chứng minh trên)
BDC = FCD (2 góc so le trong, AD // CF)
CD chung
=> Tam giác BDC = Tam giác FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC
BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC
Xét tam giác AED và tam giác CEF có:
AE = CE (E là trung điểm của AC)
AED = CEF (2 góc đối đỉnh)
ED = EF (E là trung điểm của DF)
=> Tam giác AED = Tam giác CEF (c.g.c)
=> AD = CF (2 cạnh tương ứng) mà AD = DB (D là trung điểm của AB) => DB = CF
ADE = CFE (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AD // CF
Xét tam giác BDC và tam giác FCD có:
BD = FC (chứng minh trên)
BDC = FCD (2 góc so le trong, AD // CF)
CD chung
=> Tam giác BDC = Tam giác FCD (c.g.c)
=> BCD = FDC (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => DE // BC
BC = FD (2 cạnh tương ứng) mà DE = 1/2 FD (E là trung điểm của FD) => DE = 1/2 BC