K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2018

Bài này phải vẽ thêm hình.

Trên một nửa mặt phẳng bờ AC ko chứa điểm B, vẽ một góc yAC = góc BAD . Trên tia Ay lấy điểm M sao cho AM = AD.

Xét tam giác ADB và tam giác AMC có :

AB = AC (Vì tam giác ABC cân tại A)

AD = AM

Góc BAD = Góc MAC

=> Tam giác ADB = Tam giác AMC (c.g.c)

=> DB = CM (Hai cạnh tương ứng) (1)

=> Góc ADB = Góc AMC (Hai góc tương ứng)

Mà góc ADB > góc ADC (gt) => AMC > ADC (2)

Nối D với M

Xét tam giác AMD có AD = AM => tam giác AMD cân tại A

=> Góc ADM = Góc AMD (3)

Ta có : Góc ADM + Góc MDC = Góc ADC

=> Góc MDC = Góc ADC - ADM

Góc AMD + Góc DMC = Góc AMC

=> Góc DMC = Góc AMC - Góc AMD

Mà Góc ADC < AMC (theo 2)

Góc ADM = Góc AMD (theo 3)

=> MDC < DMC

=> CM < DC (quan hệ góc cạnh đối diện trong tam giác DMC)

Mà DB= MC (theo 1)

=> DB < DC hay DC > DB

5 tháng 2 2022

B A C 80 I ? 10 30

Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)

=> góc BAI = 50o - 10o = 40o 

góc BCI = 50o - 30o = 20o

=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)

\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

=>AD là phân giác của góc BAC

b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN

Xét ΔAMD và ΔAND có

AM=AN

\(\widehat{MAD}=\widehat{NAD}\)

AD chung

Do đó: ΔAMD=ΔAND

=>\(\widehat{AMD}=\widehat{AND}\)

mà \(\widehat{AMD}=90^0\)

nên \(\widehat{AND}=90^0\)

=>DN\(\perp\)AC

c: Xét ΔKCD và ΔKNE có

KC=KN

\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)

KD=KE

Do đó: ΔKCD=ΔKNE

d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

nên MN//BC

Ta có: ΔKCD=ΔKNE

=>\(\widehat{KCD}=\widehat{KNE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên NE//DC

=>NE//BC

ta có: NE//BC

MN//BC

NE,MN có điểm chung là N

Do đó: M,N,E thẳng hàng

17 tháng 2 2019

Ta có: AB = AC (ΔABCΔABC cân tại A)

AD là cạnh chung.

Giả sử ADBˆ=ADCˆADB^=ADC^

Thì ΔADB=ΔADCΔADB=ΔADC

Nhưng ADBˆ>ADCˆ(gt)ADB^>ADC^(gt)

=> ΔADB>ΔADCΔADB>ΔADC

=> DB > DC.

LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ 

Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)

Xét tam giác MAB và tam giác MAC 

     MB=MC(tam giác MBC đều)

     Chung MA

     AB=AC(tam giác ABC cân tại A)

=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA

=> góc BMA=30 độ

Xét tam giác BMA và tam giác BCD 

     góc BMA=BCD(=30)

     BM=BC(tam giác MBC đều)

     goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )

=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40

=> BAD=(180-40)/2=70

     

Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)

Xét tam giác BIA và tam giác CIA

     AB=AC ( ABC cân tại A)

     ABI=ACI(=10)

     BI=CI(do BIC đều)

=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20

Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)

Do đó BAI=BDC hay BDC=20

17 tháng 2 2019

Vì D nằm trong tam giác ABC

=> Góc BDC = 90 độ + ( Góc BAC : 2)

                    = 90 độ + 90 độ : 2

                    = 90 độ + 45 độ 

                    = 135 độ 

Mà Góc BDC + Góc ADC + Góc ADB = 360 độ

=> 135 độ + 150 độ + Góc ADB = 360 độ

      285 độ + Góc ADB = 360 độ

=> Góc ADB = 360 độ - 285 độ

                    = 75 độ

Hok tốt !!