Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này phải vẽ thêm hình.
Trên một nửa mặt phẳng bờ AC ko chứa điểm B, vẽ một góc yAC = góc BAD . Trên tia Ay lấy điểm M sao cho AM = AD.
Xét tam giác ADB và tam giác AMC có :
AB = AC (Vì tam giác ABC cân tại A)
AD = AM
Góc BAD = Góc MAC
=> Tam giác ADB = Tam giác AMC (c.g.c)
=> DB = CM (Hai cạnh tương ứng) (1)
=> Góc ADB = Góc AMC (Hai góc tương ứng)
Mà góc ADB > góc ADC (gt) => AMC > ADC (2)
Nối D với M
Xét tam giác AMD có AD = AM => tam giác AMD cân tại A
=> Góc ADM = Góc AMD (3)
Ta có : Góc ADM + Góc MDC = Góc ADC
=> Góc MDC = Góc ADC - ADM
Góc AMD + Góc DMC = Góc AMC
=> Góc DMC = Góc AMC - Góc AMD
Mà Góc ADC < AMC (theo 2)
Góc ADM = Góc AMD (theo 3)
=> MDC < DMC
=> CM < DC (quan hệ góc cạnh đối diện trong tam giác DMC)
Mà DB= MC (theo 1)
=> DB < DC hay DC > DB
Do ΔABC cân tại B => A = C = \(\dfrac{180^o-80^o}{2}=50^o\)
=> góc BAI = 50o - 10o = 40o
góc BCI = 50o - 30o = 20o
=> \(IBC=\dfrac{1}{3}ABI\Rightarrow IBC=\dfrac{80^o}{3+1}=20^o;ABI=80^o-20^o=60^o\)
\(\Leftrightarrow AIB=180^o-40^o-60^o=80^o\)
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
Do đó: ΔABD=ΔACD
=>\(\widehat{BAD}=\widehat{CAD}\)
=>AD là phân giác của góc BAC
b: Sửa đề: DM\(\perp\)AB tại M. Chứng minh AC\(\perp\)DN
Xét ΔAMD và ΔAND có
AM=AN
\(\widehat{MAD}=\widehat{NAD}\)
AD chung
Do đó: ΔAMD=ΔAND
=>\(\widehat{AMD}=\widehat{AND}\)
mà \(\widehat{AMD}=90^0\)
nên \(\widehat{AND}=90^0\)
=>DN\(\perp\)AC
c: Xét ΔKCD và ΔKNE có
KC=KN
\(\widehat{CKD}=\widehat{NKE}\)(hai góc đối đỉnh)
KD=KE
Do đó: ΔKCD=ΔKNE
d: Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
Ta có: ΔKCD=ΔKNE
=>\(\widehat{KCD}=\widehat{KNE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên NE//DC
=>NE//BC
ta có: NE//BC
MN//BC
NE,MN có điểm chung là N
Do đó: M,N,E thẳng hàng
Ta có: AB = AC (ΔABCΔABC cân tại A)
AD là cạnh chung.
Giả sử ADBˆ=ADCˆADB^=ADC^
Thì ΔADB=ΔADCΔADB=ΔADC
Nhưng ADBˆ>ADCˆ(gt)ADB^>ADC^(gt)
=> ΔADB>ΔADCΔADB>ΔADC
=> DB > DC.
LƯU Ý: MÌNH KHÔNG BIẾT VẼ HÌNH NÊN BẠN VẼ NHÉ
Bài 1: DỰNG TAM GIÁC ĐỀU MBC ( M;A nằm trên cùng một nửa mặt phẳng bờ BC)
Xét tam giác MAB và tam giác MAC
MB=MC(tam giác MBC đều)
Chung MA
AB=AC(tam giác ABC cân tại A)
=> Tam giác MAB= tam giác MBC => góc BMA= góc CMA
=> góc BMA=30 độ
Xét tam giác BMA và tam giác BCD
góc BMA=BCD(=30)
BM=BC(tam giác MBC đều)
goc MBA=CBD(=10) (CHỖ NÀY BẠN KHÔNG HIỂU HỎI MK NHÉ )
=> tam giac BMA=BCD=>AB=DB=> tam giac BAD cân tại B . Lại có DBM=40
=> BAD=(180-40)/2=70
Bài 2: Dựng tam giác đều BCI( I;A cùng phía so với BC)
Xét tam giác BIA và tam giác CIA
AB=AC ( ABC cân tại A)
ABI=ACI(=10)
BI=CI(do BIC đều)
=> tam giác BIA=CIA =>góc BAI=CAI=40/2=20
Tương tự ta chứng minh được tam giác ABI = tam giác DBC(c.g.c) ( NẾU HỎI MK SẼ NHẮN TRONG PHÂN CHAT)
Do đó BAI=BDC hay BDC=20
Vì D nằm trong tam giác ABC
=> Góc BDC = 90 độ + ( Góc BAC : 2)
= 90 độ + 90 độ : 2
= 90 độ + 45 độ
= 135 độ
Mà Góc BDC + Góc ADC + Góc ADB = 360 độ
=> 135 độ + 150 độ + Góc ADB = 360 độ
285 độ + Góc ADB = 360 độ
=> Góc ADB = 360 độ - 285 độ
= 75 độ
Hok tốt !!