Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Lời giải phía trên sai rồi. Biểu thức (mình đặt là A) sẽ bằng \(\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Ta biển đổi \(A=\frac{1}{4}.\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}+\frac{3}{4}.\frac{x^2+y^2}{xy}\)
Thực hiện BĐT Cauchy 2 lượng đầu, lượng cuối cùng dùng BĐT \(x^2+y^2\ge2xy\)
Vậy giá trị nhỏ nhất là \(\frac{5}{2}\)
Áp dụng BĐT Cauchy-Schwarz Engel, ta được:
T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))
Áp dụng BĐT AM-GM , ta được:
T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)
Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673
\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)
=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)
=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)
xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)
\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)
Vậy GTNN của Q là 1 <=> x = y = 2
Or
\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*
Do đó \(Q\ge1\)
Đẳng thức xảy ra khi x = y = 2
Ta có xy=2 => \(y=\frac{2}{x}\)
ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)= \(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)
Áp dụng BĐT AM - GM ta được :
M \(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)
Dấu "="......
Vậy Min M = \(\sqrt{6}\) Khi ......
============
bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé
=========================