K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

Ta có : x= 3-y-z

X2+y2+z2  <=> ( 3-y-z) 2+y2+z2

<=> 32+y2+z-6y-6z+2yz +z+y2         

<=>( y+ 2yz +z)+(z-6z+32)+(y2-6y+32)-9 

<=> ( y+z)2 +(z-3)2+(y-3)2-9

<=> ( y+z)2 +(z-x-y-z)^2 +(y-x-z-y)^2-9

<=> (y+z)^2 + (-x-y)^2 +( -x-z)^2-9 >= -9

<=> minn = -9 <=> x=y=z =0

Cậu xem thử như vậy có hợp lý không,  mình không chắc lắm

12 tháng 1 2018

Xét : 1/x^2+x + x/2 + x+1/4 = 1/x.(x+1) +x/2 + x+1/4 >= 3\(\sqrt[3]{\frac{1}{x.\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}\) = 3/2

=> 1/x^2+x >= 3/2 - x/2 - x+1/4 = 3/2 - (3x+1)/4

Tương tự : 1/y^2+y >= 3/2 - (3y+1)/4 ; 1/z^2+z >= 3/2 - (3z+1)/4

=> M >= 9/2 - (3x+3y+3z+3)/4 = 9/2 - (3.3+3)/4 = 9/2 - 3 = 3/2

Dấu "=" xảy ra <=> x=y=z=1

Vậy GTNN của M = 3/2 <=> x=y=z=1

Tk mk nha

16 tháng 1 2018

cảm ơn bạn nhé

Ta có : \(\left(a-b\right)^2\ge0\forall a,b\)

            \(\left(b-c\right)^2\ge0\forall b,c\)

             \(\left(c-a\right)^2\ge0\forall c,a\)

Nên : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Thay số ta có : \(a^2+b^2+c^2\ge\frac{2^2}{3}=\frac{4}{3}\)

Vậy GTNN của bt là \(\frac{4}{3}\) 

1 tháng 6 2018

cảm ơn bạn nhiều

AH
Akai Haruma
Giáo viên
3 tháng 2 2023

Lời giải:
Áp dụng BĐT Cô-si:

$\frac{1}{x(x+1)}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}$

Tương tự:

$\frac{1}{y(y+1)}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}$

$\frac{1}{z(z+1)}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}$

Cộng theo vế các BĐT trên:

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{4}(x+y+z)+\frac{3}{4}\geq \frac{9}{2}$

$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{9}{4}+\frac{3}{4}\geq \frac{9}{2}$

$\Rightarrow \frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{3}{2}$ 

Vậy gtnn của biểu thức là $\frac{3}{2}$ khi $x=y=z=1$

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

9 tháng 8 2020

\(P+3=\frac{x^3}{y^2}+x+\frac{y^3}{z^2}+y+\frac{z^3}{x^2}+z\)

\(P+3\ge2\sqrt{\frac{x^4}{y^2}}+2\sqrt{\frac{y^4}{z^2}}+2\sqrt{\frac{z^4}{x^2}}=2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\)

Theo bất đẳng thức Svacso ta có

\(P+3\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\ge2\left(\frac{\left(x+y+z\right)^2}{x+y+z}\right)=2\left(x+y+z\right)=6\)

dấu = xay ra khi x = y = z = 1

\(\Rightarrow P\ge3\)

9 tháng 8 2020

\(P+3=\frac{x^3}{y^2}+x+\frac{y^3}{z^2}+y+\frac{z^3}{x^2}+z\ge2\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)\)

\(\ge\frac{2\left(x+y+z\right)^2}{x+y+z}=2\left(x+y+z\right)=6\)

\(\Leftrightarrow P\ge3\)

Dấu bằng xảy ra khi x=y=z=1

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)

24 tháng 10 2016

Áp dụng Bđt Cauchy-schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=3^2=9\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

\(\Rightarrow P\ge3\)

Dấu = khi x=y=z=1