K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

\(M=\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}=\frac{z}{x+y}+1+\frac{x}{y+z}+1+\frac{y}{z+x}+1-3..\)

      = \(\frac{x+y+z}{x+y}+\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}-3.\)

     = \(\left(x+y+z\right).\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3.\)

    = \(2010.\frac{1}{2018}-3=\frac{-2022}{1009}.\)

29 tháng 6 2016

Ta có:\(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}=\frac{1}{2018}\)

Nhân cả hai vế với (x+y+z) ta có:

\(\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}=\frac{x+y+z}{2018}\)

\(\Rightarrow1+\frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}=\frac{2010}{2018}\)

\(\Rightarrow3+M=\frac{1005}{1009}\)

\(\Rightarrow M=\frac{1005}{1009}-3\)

\(\Rightarrow M=\frac{-2022}{1009}\)

19 tháng 6 2023

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

19 tháng 6 2023

avt ảnh bạn à, vừa handsome vừa học giỏi nx -.-

3 tháng 3 2018

Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)

Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)

Dễ dàng tìm được x;y;z rồi thay vào b thức

6 tháng 4 2018

?????? tớ không biết nhưng k cho mình nha

25 tháng 2 2020

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)\(\Rightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Do đó:  +) \(\frac{y+z}{x}=2\)\(\Rightarrow y+z=2x\)

+) \(\frac{z+x}{y}=2\)\(\Rightarrow z+x=2y\)

+) \(\frac{x+y}{z}=2\)\(\Rightarrow x+y=2z\)

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{y+x}{y}.\frac{z+y}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2.2.2=8\)

26 tháng 1 2017

Từ \(\frac{y+x-z}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x-z}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+x}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

* Xét \(x+y+z\ne0\)

\(\Rightarrow x=y=z\)

Khi đó \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=2.2.2=8\)

* Xét \(x+y+z=0\)

\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

4 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}\) (1)

Xét 1 trường hợp:

  • TH1: x + y + z = 0 \(\Rightarrow\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}\)

Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

  • TH2: \(x+y+z\ne0\)

Từ (1) \(\Rightarrow\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}\)\(\Rightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)

Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2^3=8\)

 

5 tháng 1 2018

ta có\(\frac{y+z-x}{x}\) =

5 tháng 1 2018

ta có y+z-x/x=z+x-y/y=x+y-z/z=y+z-x+z+x-y+x+y-z/x+y+z=(2y-y)+(2x-x)+(2z-z)/x+y+z=y+x+z/x+y+z=1

=>y+z-x/x=1                          =>z+x-y/y=1

    z+x-y/y=1                             x+y-z/z=1

=> y+z-x=x                         => z+x-y=y

    z+x-y=y                               x+y-z=z

=>2y-2x=x-y                            =>2z-2y=y-z

  3y-3x=0                               3z-3y=0

  y-x=0                                      z-y=0

=>x=y                                 =>z=y

            =>x=y=z

=> y+z-x/x+z+x-y/y+x+y-z/z= 0,(3)+0,(3)+0,(3)=1

=>x +y+z=0,(3)+0,(3)+0,(3)=1

thay vào b=(1+x/y). (1+y/z). (1+z/x)

            b=(1+0,(3)/0,(3)).(1+0,(3)/0,(3)).(1+0,(3)/0,(3))

               b=(1+1).(1+1).(1+1)

            b=2.2.2

            b=2^3

            b=8 

CÂU TRẢ LỜI TRƯỚC MK BẤM NHẦM

24 tháng 2 2019

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x+y-2014z}{z}=\frac{y+z-2014x}{x}=\frac{z+x-2014y}{y}=\frac{\left(-2012\right)\left(x+y+z\right)}{x+y+z}=-2012\)

Ta có: \(\frac{x+y-2014z}{z}=-2012\Rightarrow x+y-2014z=-2012z\Leftrightarrow x+y=2z\)

Tương tự: \(y+z=2x,z+x=2y\)

Khi đó:  \(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{2x.2y.2z}{xyz}=8\)

Vậy A=8.

24 tháng 2 2019

Nguyễn Tất Đạt thiếu 1 trường hợp nha bạn

\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x=-y-z\\y=-x-z\\z=-x-y\end{cases}}\)

\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)

\(A=\left(-\frac{z}{y}\right).\left(\frac{-x}{z}\right).\left(\frac{-y}{x}\right)=-1\)