Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)
\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{x^3}{y(x+z)}+\frac{y}{2}+\frac{x+z}{4}\geq \frac{3}{2}x$
Tương tự với các phân thức còn lại, cộng theo vế và rút gọn ta được:
$\Rightarrow P=\sum \frac{x^3}{y(x+z)}\geq \frac{x+y+z}{2}$
Tiếp tục áp dụng AM-GM:
$x+y\geq 2\sqrt{xy}$
$y+z\geq 2\sqrt{yz}$
$x+z\geq 2\sqrt{xz}$
$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1$
$\Rightarrow P\geq \frac{1}{2}$
Vậy $P_{\min}=\frac{1}{2}$ khi $x=y=z=\frac{1}{3}$
\(\dfrac{x^3}{y\left(x+z\right)}+\dfrac{y}{2}+\dfrac{x+z}{4}\ge\dfrac{3x}{2}\)
Tương tự và cộng lại:
\(P+x+y+z\ge\dfrac{3}{2}\left(x+y+z\right)\)
\(\Rightarrow P\ge\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(\sum\dfrac{x^2}{y^2+yz+z^2}\ge\sum\dfrac{x^2}{y^2+\dfrac{y^2+z^2}{2}+z^2}=\dfrac{2}{3}\sum\dfrac{x^2}{y^2+z^2}\ge\dfrac{2}{3}.\dfrac{3}{2}=1\) (BĐT cuối là BĐT Netsbitt)
Câu b là bài IMO 2001 USA, em có thể tìm thấy rất nhiều lời giải
\(\dfrac{\sqrt{2}}{\sqrt{2x}.\sqrt{y+z}}\ge\dfrac{\sqrt{2}}{\dfrac{2x+y+z}{2}}=\dfrac{2\sqrt{2}}{2x+y+z}\)
\(\Rightarrow A\ge\sum\dfrac{2\sqrt{2}}{2x+y+z}=2\sqrt{2}\sum\dfrac{1}{2x+y+z}\ge2\sqrt{2}.\dfrac{9}{4\left(x+y+z\right)}=\dfrac{18\sqrt{2}}{4.18\sqrt{2}}=\dfrac{1}{4}\)
\(\Rightarrow A_{min}=\dfrac{1}{4}\) khi \(x=y=z=6\sqrt{2}\)
Ta có :
\(P=\sum\dfrac{x^3}{\sqrt{y^2+3}}\ge\sum\dfrac{x^3}{\sqrt{y^2+xy+yz+zx}}\ge\sum\dfrac{x^3}{\sqrt{\left(x+y\right)\left(z+y\right)}}\\ \overset{Cosi}{\ge}\sum\dfrac{2x^3}{x+2y+z}\ge2\sum\dfrac{\left(x^2\right)^2}{x^2+2xy+xz}\\ \overset{Svacxo}{\ge}2\dfrac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
\(\overset{Cosi}{\ge}\dfrac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{2}\\ \overset{Cosi}{\ge}\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
Ta có: \(\sqrt{\left(x^2+\dfrac{1}{y^2}\right)\left(1+81\right)}\ge\sqrt{\left(x+\dfrac{9}{y}\right)^2}\)
=> \(\sqrt{x^2+\dfrac{1}{y^2}}\ge\dfrac{x+\dfrac{9}{y}}{\sqrt{82}}\)
Tương tự => \(\left\{{}\begin{matrix}\sqrt{y^2+\dfrac{1}{z^2}}\ge\dfrac{y+\dfrac{9}{z}}{\sqrt{82}}\\\sqrt{z^2+\dfrac{1}{x^2}}\ge\dfrac{z+\dfrac{9}{x}}{\sqrt{82}}\end{matrix}\right.\)
=> \(P\ge\dfrac{\left(x+y+z\right)+9\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}{\sqrt{82}}\)
Mà x + y + z = 1
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}=9\)
=> \(P\ge\sqrt{82}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
\(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3=3\)
\(\Rightarrow3\ge3\sqrt[3]{\left(ab.bc.ca\right)^3}=3\left(abc\right)^2\Rightarrow a^2b^2c^2\le1\)
Ta có: \(\dfrac{a^{10}}{b^2c^2}+a^2b^2c^2\ge2a^6\)
Tương tự và cộng lại: \(P+3\left(abc\right)^2\ge2\left(a^6+b^6+c^6\right)\)
\(\Rightarrow P\ge2\left(a^6+b^6+c^6\right)-3a^2b^2c^2\ge2\left[\left(ab\right)^3+\left(bc\right)^3+\left(ca\right)^3\right]-3=3\)