K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LV
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NX
1
GV
3
BT
10 tháng 3 2018
Cách 1:
Áp dụng tính chất cuẩ BĐT, Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
=> \(x^4+y^4+z^4\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{16}{27}\)
=> GTNN của \(x^4+y^4+z^4=\frac{16}{27}\) đạt được khi x=y=z=2/3
TN
0
HP
9 tháng 4 2017
Đặt A=x^4+y^4+z^4 ,P=x^2+y^2+z^2
Ta có A=(x^2)^2+(y^2)^2+(z^2)^2
Áp dụng bđt Cauchy-Schwarz ta có
3A=[(x^2)^2+(y^2)^2+(z^2)^2](1^2+1^2+1^2) >/ (x^2+y^2+z^2)^2=> A >/ (x^2+y^2+z^2)^2/3
Áp dụng bđt Cauchy-Schwarz lần 2
3P=(x^2+y^2+z^2)(1^2+1^2+1^2) >/ (x+y+z)^2=> P >/ (x+y+z)^2/3 >/ 2^2/3 >/ 4/3
=> A >/ (4/3)^2/3=16/27
Đẳng thức xảy ra <=> x=y=z=2/3
\(\left(x+y+z\right)^2=x^2+y^2+z^2+xy+yz+xz=2\)
Mà \(xy+yz+xz\le x^2+y^2+z^2\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{4}{3}\)
Tương tự: \(x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right).\frac{1}{3}\ge\frac{16}{27}\)
Dấu "=" xảy ra khi x = y = z = 2/3