K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

phân tích gt sau đó suy ra x+y+x=0 

từ đây tính đc x+y=? y+z=? x+z=? 

ta được kết quả là'; -2006

30 tháng 12 2018

Xét \(x^3+y^3+z^3=3xyz\)

\(x^3+y^3+z^3-3xyz=0\)

\(\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

\(\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\left(x+y+z\right)\left(x^2+2xy+y^2-xy-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

TH1:\(x+y+z=0\) 

\(\Rightarrow x+y=-z;y+z=-x;z+x=-y\left(1\right)\)

Thay (1) vô pt cần tính:

\(\frac{2016xyz}{-z.-x.-y}=\frac{2016xyz}{-\left(xyz\right)}=-2016\)

TH2:\(x^2+y^2+z^2-xy-yz-xz=0\)

Nhân 2 vế với 2

\(2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)

\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

Do VT dương

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-z\right)^2=0\\\left(y-z\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x-y=0\\x-z=0\\y-z=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=z\\y=z\end{cases}}\Rightarrow x=y=z\)

Thay y,z ở pt cần tính là x

\(\Rightarrow\frac{2016x.x.x}{\left(x+x\right)\left(x+x\right)\left(x+x\right)}=\frac{2016x^3}{2x.2x.2x}=\frac{2016x^3}{8x^3}=\frac{2016}{8}=252\)

Vậy pt có thể = -2016 khi x + y + z = 0

       pt có thể = 252 khi \(x^2+y^2+z^2-xy-xz-yz=0\)

24 tháng 2 2019

m thử sử dụng cái j mà x-y=-(y-z+z-x)

31 tháng 3 2019

Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)

Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)

Suy ra: \(1⋮x+y+z+1\)

 \(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))

\(\Leftrightarrow x=y=z=0\)

Vậy \(x=y=z=0\)