Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(1\right)\)
\(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\left(2\right)\)
\(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{xz}}\left(3\right)\)
Cộng (1),(2),(3) vế theo vế ta được :
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\left(đpcm\right)\)
Ta thấy : \(\left(x-y\right)^2\ge0\)\(\Rightarrow x^2+y^2\ge2xy\)
Mà : \(x^2+y^2=1\)\(\Rightarrow2xy\le1\)
\(\Rightarrow x^2+y^2+2xy\le1+1\)
\(\Rightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow|x+y|\le\sqrt{2}\)
\(\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)\(\left(đpcm\right)\)
Ta có \(1+x^2=x^2+xy+yz+xz=\left(x+z\right)\left(x+y\right)\)
Khi đó BĐT <=>
\(\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+z\right)\left(x+z\right)}+\frac{1}{\left(x+y\right)\left(y+z\right)}\ge\frac{2}{3}\left(\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}+...\right)\)
<=> \(\frac{x+y+z}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\frac{x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}}{\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}}\right)^3\)
<=>\(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\ge\frac{1}{3}\left(x\sqrt{y+z}+y\sqrt{x+z}+z\sqrt{x+y}\right)^3\)
<=> \(\left(x+y+z\right)\sqrt{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\right)^3\)(1)
Xét \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+xz\right)\)
<=> \(9\left[xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\right]\ge8\left(xy\left(x+y\right)+xz\left(x+z\right)+yz\left(y+z\right)+3xyz\right)\)
<=> \(xy\left(y+x\right)+yz\left(y+z\right)+xz\left(x+z\right)\ge6xyz\)
<=> \(x\left(y-z\right)^2+z\left(x-y\right)^2+y\left(x-z\right)^2\ge0\)luôn đúng
Khi đó (1) <=>
\(\left(x+y+z\right).\frac{2\sqrt{2}}{3}.\sqrt{x+y+z}\ge\frac{1}{3}\left(\sqrt{x\left(1-yz\right)}+....\right)^3\)
<=> \(\sqrt{2\left(x+y+z\right)}\ge\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\)
Áp dụng buniacopxki cho vế phải ta có
\(\sqrt{x\left(1-yz\right)}+\sqrt{y\left(1-xz\right)}+\sqrt{z\left(1-xy\right)}\le\sqrt{\left(x+y+z\right)\left(3-xy-yz-xz\right)}\)
\(=\sqrt{2\left(x+y+z\right)}\)
=> BĐT được CM
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải bài này khá dài, làm biếng gõ
Bạn lên google search "đề thi vào 10 chuyên khtn" nhé, đây là bài BĐT trong đề vòng 1 chuyên KHTN năm 2019
Ta có:
\( 1 + {x^2} = \left( {x + y} \right)\left( {x + z} \right)\\ 1 + {y^2} = \left( {x + y} \right)\left( {y + z} \right)\\ 1 + {z^2} = \left( {x + z} \right)\left( {y + z} \right) \)
Nên: \(\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} = \dfrac{1}{{\left( {x + y} \right)\left( {x + z} \right)}} + \dfrac{1}{{\left( {x + y} \right)\left( {y + z} \right)}} + \dfrac{1}{{\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {y + z} \right)\left( {x + z} \right)}}\)
\( \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }} = \dfrac{x}{{\sqrt {\left( {x + y} \right)\left( {x + z} \right)} }} + \dfrac{y}{{\sqrt {\left( {x + y} \right)\left( {y + z} \right)} }} + \dfrac{z}{{\left( {x + z} \right)\left( {y + z} \right)}}\\ \dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }} \le \dfrac{1}{2}\left( {\dfrac{x}{{x + y}} + \dfrac{x}{{x + z}} + \dfrac{y}{{x + y}} + \dfrac{y}{{y + z}} + \dfrac{z}{{x + z}} + \dfrac{z}{{y + z}}} \right) \)
Mặt khác, áp dụng $Bunhia$ ta có:
\({\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}} \right)^2} \le \left( {x + y + z} \right)\left( {\dfrac{x}{{1 + {x^2}}} + \dfrac{y}{{1 + {y^2}}} + \dfrac{z}{{1 + {z^2}}}} \right) = M\)
Với \(M = \dfrac{{2\left( {x + y + z} \right)\left( {xy + yz + xz} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}}\)
Lại có:
\( VP = \dfrac{2}{3}{\left( {\dfrac{x}{{1 + {x^2}}} + \dfrac{y}{{1 + {y^2}}} + \dfrac{z}{{1 + {z^2}}}} \right)^3} = \dfrac{2}{3}{\left( {\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}}} \right)^2}\\ VP \le \dfrac{{4\left( {x + y + z} \right)}}{{3\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}}.\dfrac{3}{2} = \dfrac{{2\left( {x + y + z} \right)}}{{\left( {x + y} \right)\left( {x + z} \right)\left( {y + z} \right)}} = \dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} \)
Vậy \(\dfrac{1}{{1 + {x^2}}} + \dfrac{1}{{1 + {y^2}}} + \dfrac{1}{{1 + {z^2}}} \ge \dfrac{3}{2}{\left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} + \dfrac{y}{{\sqrt {1 + {y^2}} }} + \dfrac{z}{{\sqrt {1 + {z^2}} }}} \right)^2}\)
Dấu \("= "\) xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)
hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+zx=xyz\)
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Bình phương vế trái :
\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)
\(=\left(x+y+z+xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)Bình phương vế phải :
\(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=\left(xyz+x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
Suy ra cần phải chứng minh : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)(*)
Thật vậy, theo bđt Bunhiacopxki ta có : \(\sqrt{x+yz}.\sqrt{y+zx}\ge\sqrt{xy}+z\sqrt{xy}\)
\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)
\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)
Cộng các bđt trên theo vế ta chứng minh được (*) đúng.
Vậy bđt ban đầu được chứng minh.
Ý tưởng khác
Cũng từ giả thiết suy ra \(xyz=xy+yz+xz\)
Suy ra \(\sqrt{x+yz}=\sqrt{\frac{x^2+xyz}{x}}=\sqrt{\frac{x^2+xy+yz+xz}{x}}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)
Theo BĐT Cauchy-Schwarz ta có \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\) do đó:
\(\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{x}=\sqrt{x}+\sqrt{\frac{yz}{x}}\)
Tương tự cho 2 BĐT còn lại \(\sqrt{y+xz}\ge\sqrt{y}+\sqrt{\frac{xz}{y}};\sqrt{z+xy}\ge\sqrt{z}+\sqrt{\frac{xy}{z}}\)
Cộng theo vế 3 BĐT được \(VT\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)
\(\Leftrightarrow VT\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)
\(\Leftrightarrow VT\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\) (Đpcm)
chia cả 2 vế của giả thiết cho xyz rồi đặt 1/x ; 1/y ; 1/z => a ; b ; c
đến đây thì tự làm tiếp đi
Ta có: \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)
Tương tự ta cũng có: \(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}=\frac{2}{\sqrt{yz}},\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}=\frac{2}{\sqrt{xz}}\).
Cộng lại vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{zx}}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
Dấu \(=\)khi \(x=y=z>0\).
Đặt \(\sqrt{\frac{1}{x}}=a;\sqrt{\frac{1}{y}}=b;\sqrt{\frac{1}{z}}=c\),bất đẳng thức ban đầu tương đương với
\(a^2+b^2+c^2\ge ab+bc+ca\)\(< =>a^2+b^2+c^2-ab-bc-ca\ge0\)
\(< =>\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)(*)
Do bất đẳng thức (*) đúng và các phép biến đổi là tương đương nên ta có điều phải chứng minh
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)\(< =>\)\(x=y=z\)