Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si, ta có : \(\sqrt{\frac{y+z}{x}.1}\le\frac{\frac{y+z}{x}+1}{2}=\frac{x+y+z}{2x}\)
\(\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\)
Tương tự : ....
Cộng từng vế BĐT, ta được : \(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y+z\\y=x+z\\z=x+y\end{cases}}\Rightarrow x+y+z=0\)( trái với gt ) nên dấu "=" không xảy ra
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Áp dụng BĐT \(\sqrt{a^2+b^2}\ge\frac{\sqrt{2}}{2}\left(a+b\right)\) (bạn tự chứng minh)
Ta có \(P=\frac{\sqrt{x^2+y^2}}{z}+\frac{\sqrt{y^2+z^2}}{x}+\frac{\sqrt{z^2+x^2}}{y}\ge\frac{\sqrt{2}}{2}\left(\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\right)\)
\(=\frac{\sqrt{2}}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\ge\frac{\sqrt{2}}{2}\left(2+2+2\right)=3\sqrt{2}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=y=z\\x,y,z>0\end{cases}}\)
Vậy min P = \(3\sqrt{2}\) khi x = y = z
Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\)
BĐT cần chứng minh: \(\frac{a+b}{c^2}+\frac{b+c}{a^2}+\frac{c+a}{b^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(VT=a\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+b\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+c\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)
Mà: \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{a}{bc}+\frac{b}{ac}\ge\frac{2}{c}\) ; \(\frac{c}{ab}+\frac{b}{ac}\ge\frac{2}{a}\)
\(\Rightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)
\(\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{x}+\sqrt{y}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}\)
\(tt:\frac{y-z}{\sqrt{y}+\sqrt{z}}=\sqrt{y}-\sqrt{z};.....\)
\(\Rightarrow\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{y}+\sqrt{x}}+.....-\frac{x}{\sqrt{x}+\sqrt{z}}=0\Rightarrow dpcm\)
\(\sqrt{\frac{x}{y+z}}=\frac{\sqrt{x}}{\sqrt{y+z}}=\frac{x}{\sqrt{\left(y+z\right)x}}\ge\frac{x}{\frac{x+y+z}{2}}=\frac{2x}{x+y+z}\)
T.tự:
\(\Rightarrow VT\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)