Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow xy+yz+xz=0\)
Ta có: \(\left(xy+yz+xz\right)\left(x^2y^2+y^2z^2+x^2z^2-x^2yz-xy^2z-xyz^2\right)=0\)
\(\Leftrightarrow\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=3\left(xyz\right)^2\)
\(\Leftrightarrow\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}=3\)
Từ đây ta có được K = 1
Ta có \(x+y+z=0\)
\(\Rightarrow y+z=-x\)
\(\Rightarrow\left(y+z\right)^2=x^2\)
\(\Rightarrow y^2+z^2-x^2=-2yz\)
Chứng minh tương tự ta có : \(x^2+y^2-z^2=-2xy;x^2+z^2-y^2=-2zx\)
\(\Rightarrow M=\frac{-1}{2yz}+\frac{-1}{2xy}+\frac{-1}{2xz}=\frac{-x-y-z}{2xyz}\)
cái này mình không chắc nha
1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= x2y+xy2+y2z+yz2+x2z+xz2+2xyz
=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)
=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)
=(xy+xz+yz+z2).(x+y)
=(x(y+z)+z(y+z)).(x+y)
=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)
2. 3(x-3)(x-7)+(x-4)2+48
=3(x2+4x-21)+x2-8x+16+48
=4x2-4x+1 = (2x-1)2
Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0
3, x2-6x+10
= x2-2.3.x+9+1
=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)2 >=0 với mọi x)
=> x26x+10 >0 với mọi x
4x-x2-5
=-(x2-4x+5)
=- (x2-2.2x+4+1)
= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)
vậy, 4x-x2-5<0 với mọi x
Ta có : x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x - 3)2 + 1
Mà (x - 3)2 \(\ge0\forall x\)
Nên : (x - 3)2 + 1 \(\ge1\forall x\)
=> (x - 3)2 + 1 \(>0\)(đpcm)
\(A=\left(x^2+y^2+z^2\right)\left[\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\right]+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2\right)^2+2\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\) là một số chính phương (đpcm)
Ta có
xy + yz + xz \(\le\)x2 + y2 + z2
<=> 3(xy + yz + xz) \(\le\)(x + y + z)2 = 9
<=> xy + yz + xz \(\le\)3
Vậy GTLN là 3 đạt được khi x = y = z = 1