Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)
\(=\left(ab^2-cb^2\right)+\left(ca^2-c^2a\right)+\left(bc^2-ba^2\right)\)
\(=b^2\left(a-c\right)+ca\left(a-c\right)+b\left(c^2-a^2\right)\)
\(=\left(a-c\right)\left(b^2+ca\right)-b\left(a-c\right)\left(a+c\right)\)
\(=\left(a-c\right)\left(b^2+ca-ba-bc\right)\)
\(=\left(a-c\right)\left[b\left(b-a\right)+c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]\)
\(=\left(a-c\right)\left(b-a\right)\left(b-c\right)\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)
\(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)
\(=\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{x}{y}+\frac{x}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=y\cdot-\frac{1}{y}+x\cdot-\frac{1}{x}+z\cdot-\frac{1}{z}=-1-1-1=-3\)
vậy A=-3