Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\Rightarrow\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca=1\end{matrix}\right.\)
\(K=\frac{\frac{1}{a}}{\sqrt{\frac{1}{bc}\left(1+\frac{1}{a^2}\right)}}+\frac{\frac{1}{b}}{\sqrt{\frac{1}{ac}\left(1+\frac{1}{b^2}\right)}}+\frac{\frac{1}{c}}{\sqrt{\frac{1}{ab}\left(1+\frac{1}{c^2}\right)}}\) \(=\frac{\frac{1}{a}}{\sqrt{\frac{a^2+1}{a^2bc}}}+\frac{\frac{1}{b}}{\sqrt{\frac{b^2+1}{ab^2c}}}+\frac{\frac{1}{c}}{\sqrt{\frac{c^2+1}{abc^2}}}\)
\(=\sqrt{\frac{bc}{a^2+1}}+\sqrt{\frac{ca}{b^2+1}}+\sqrt{\frac{ab}{c^2+1}}\) \(=\sqrt{\frac{bc}{a^2+ab+bc+ca}}+\sqrt{\frac{ca}{b^2+ab+bc+ca}}+\sqrt{\frac{ab}{c^2+ab+bc+ca}}\)
\(=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{a}{a+c}+\frac{b}{b+c}\right)\) \(\Rightarrow K\le\frac{3}{2}\)
Dấu "=" \(\Leftrightarrow a=b=c\Leftrightarrow x=y=z=\sqrt{3}\)
Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.
Ta có:
1+x2=xy+yz+xz+x2=(x+y)(x+z)
1+y2=xy+yz+xz+y2=(y+z)(x+y)
1+z2=xy+yz+zx+z2=(x+z)(y+z)
Thay vào A ta được:
\(A=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)\(+y\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(x+z\right)\left(y+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\left(x+y\right)^2\)
\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(=xy+xz+xy+yz+xz+zy\)
\(=2\left(xy+yz+xz\right)\)
\(=2\)
Đây ms là chuẩn :)
\(x^2+1=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\)
Tương tự với mấy cái còn lại, thay vô và rút gọn.
ta có đăng thức a2 +ab+bc+ca=(a+b)(a+c)
theo đề suy ra a^2 +1=(a+b)(a+c)
khúc này bạn tự làm típ
suy ra biểu thức trên bằng a(b+c)+b(a+c)+c(a+b)
=2(ab+ac+bc)=2
1 + x2 = xy + yz + zx + x2 = y(x+z) + x(z+x) = (x+y).(x+z)
Tương tự, 1 + y2 = (y + x). (y +z) và 1 + z2 = (z +x).(z+y)
=> \(x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=x\left|y+z\right|\)
Tương tự => A = x |y +z| + y.|x+ z| + z.|x+y|
Có thể đề là rút gọn A. Yêu cầu tính A, không đủ dữ kiện ( Vid dụ : Nếu y + z > 0 và x + z< 0; x+ y < 0 => A = -2yz)
Nếu Thêm điều kiện x; y; z > 0 => A = x(y+z) + y(x+z) + z(x+y) = 2(xy + yz+ zx) = 2
\(\text{Ta có: }1+x^2=xy+yz+xz+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+y^2=xy=yz=xz+y^2=\left(y+x\right)\left(y+z\right)\)
\(1+z^2=xy+yz+xz=z^2=\left(z+x\right)\left(z+y\right)\)
\(\text{Suy ra: }A=x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+y\right)\left(x+z\right)\left(z+x\right)\left(z+y\right)}{\left(y+x\right)\left(y+z\right)}}\)
\(+z\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(z+x\right)\left(z+y\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
Ta có:
\(1+x^2=xy+yz+xz+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)
\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)
Thay vào T ta được:
\(T=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(=xy+xz+xy+yz+xz+zy\)
\(=2\left(xy+yz+xz\right)=2\left(xy+yz+xz=1\right)\)
Ta có \(1+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(z+x\right)\).
Tương tự ta cũng có \(1+y^2=\left(x+y\right)\left(y+z\right)\) và \(1+z^2=\left(z+x\right)\left(y+z\right)\).
Thu gọn được \(T=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
Bài này hình như x,y,z>0
Ta có: \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{\left(x^2+xy+yz+zx\right)}}=x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}\)
Tương tự: \(y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}=y\sqrt{\left(x+z\right)^2}\)
\(z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}=z\sqrt{\left(x+y\right)^2}\)
Cộng từng vế, ta có:
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)\)
\(\Leftrightarrow A=2\left(xy+yz+zx\right)=2\)
\(\hept{\begin{cases}1+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\1+z^2=\left(z+x\right).\left(z+y\right)\\1+x^2=\left(x+y\right)\left(x+z\right)\end{cases}}\)
Thế vào \(A=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
\(=2\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\)
Nếu x,y,z\(\ge0\Rightarrow A=2\)
Nếu x,y,z\(< 0\)\(\Rightarrow A=-2\)
Lời giải:
Đặt \(\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)=(a,b,c)\). Bài toán đã cho trở thành:
Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tính max của \(Q=\frac{\sqrt{bc}}{\sqrt{a^2+1}}+\frac{\sqrt{ac}}{\sqrt{b^2+1}}+\frac{\sqrt{ab}}{\sqrt{c^2+1}}\)
-------------------------
Vì $ab+bc+ac=1$ nên:
\(Q=\sqrt{\frac{bc}{a^2+ab+bc+ac}}+\sqrt{\frac{ac}{b^2+ab+bc+ac}}+\sqrt{\frac{ab}{c^2+ab+bc+ac}}\)
\(=\sqrt{\frac{bc}{(a+b)(a+c)}}+\sqrt{\frac{ac}{(b+c)(b+a)}}+\sqrt{\frac{ab}{(c+a)(c+b)}}\)
Áp dụng BĐT Cauchy:
\(Q\leq \frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{a}{b+a}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{b+c}\right)\)
\(Q\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy \(Q_{\max}=\frac{3}{2}\)
\(x,y,z>0:\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\left(1\right)\)
\(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\left(a,b,c>0\right)\)
\(Q=\sqrt{\frac{\frac{1}{yz}}{1+\frac{1}{x^2}}}+\sqrt{\frac{\frac{1}{xz}}{1+\frac{1}{y^2}}}+\sqrt{\frac{\frac{1}{xy}}{1+\frac{1}{z^2}}}\\ =\sqrt{\frac{bc}{1+a^2}}+\sqrt{\frac{ac}{1+b^2}}+\sqrt{\frac{ab}{1+c^2}}\)
\(\left(1\right)\Leftrightarrow ab+bc+ca=1\\ \Rightarrow a^2+1=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\\ \Rightarrow\sqrt{\frac{bc}{1+a^2}}=\sqrt{\frac{b}{a+b}}.\sqrt{\frac{c}{a+c}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
Tương tự: \(\sqrt{\frac{ca}{1+b^2}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)
\(\sqrt{\frac{ab}{1+c^2}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\\ \Rightarrow Q\le\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
(Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\Leftrightarrow x=y=z=\sqrt{3}\))